
MorphNet: Fast & Simple Resource-Constrained

Structure Learning of Deep Networks

Supplementary material

A Inception V2 trained on ImageNet

In this section we provide the technical details regarding the the experiments in
Section 5.2 of the paper.

When training with a FLOP regularizer, we used a learning rate of 10−3,
and we kept it constant in time. The values of λ that were used to obtain the
points displayed in Figure 4 are 0.7, 1.0, 1.3, 2.0 and 3.0, all times 10−9.

Tables 1 and 2 below lists the size of each convolution in Inception V2, for
the seed network and for the two MorphNetiterations. The names of the layers
are the ones generated by this1 code. Each column represents a learned DNN
structure, obtained from the previous one by applying a FLOP regularizer with
λ = 1.3 · 10−9 and then the width multiplier that was needed to restore the
number of FLOPs to the initial value of 3.88 · 109. The width multipliers at
iteration 1 and 2 respectively were 1.692 and 1.571.

B MobileNet Training Details

B.1 Training protocol

Our models operate on 128 × 128 images. The training procedure is a slight
variant of running the main MorphNetalgorithm for one iteration. This vari-
ability gives better results overall and is crucial for MorphNetto overtake the
50% width-multipler model (see below). The procedure is as follows:

1. The full network (width-multipler of 1.0 on 128 × 128 image input) was
first trained for 2 million steps (which is the typical number of steps for a
network’s performance to plateau as observed from training models with
similar model sizes). Note that training smaller networks (e.g. with a
width-multiplier of 0.25) takes significantly more steps, e.g. around 10
millions steps, to converge.

1
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/slim/python/slim/nets/inception v2.py

1

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/slim/python/slim/nets/inception_v2.py


2. The checkpoint was used to initialize MorphNettraining, which goes on for
an additional 10 million steps or until the FLOPs of the active channels
converge, whichever is longer. We tried a range of λ values ∈ {3, 4, . . . , 10, 11}×
10−9 to ensure that the converged FLOPs remain close to the FLOPs of
the width-multiplier baselines.

3. We took the converged checkpoint and extracted a pruned network (both
structure and weights) that consists of only the active channels.

4. Finally, we fine-tuned the pruned network using a small learning rate
(0.0013). This is merely to restore moving average statistics for batch-
normalization, and normally takes a negligible number, e.g. 20k, of steps.
While training for longer keeps improving the accuracy, simply training
for 20k steps suffices to outperform models with width multipliers.

All training steps use the same optimizer, which is discussed below.

B.2 Trainer

We use the same trainer from MobileNet v2 (2), described below. We trained
with the RMSProp optimizer (3) implemented in Tensorflow (1) with a batch-
size of 96. The initial learning rate was chosen from {0.013, 0.045}, unless
otherwise specified. The learning rate decays by a factor of 0.98 every 2.5
epochs. Training uses 16 workers asynchronously.

B.3 Observations

The total training time for each attempted λ value is around 2 + 10 = 12
million steps, which is less than twice the number of steps (around 10 million)
for training a regular network. Although multiple λ values are required, each
one of them contributes to the “optimal” FLOPs-vs-accuracy tradeoff, as shown
in figure 1. The “optimality” is defined in a narrow sense that no model is
dominated in both FLOP and accuracy by another. By contrast, the 50% width-
multipler model is dominated by the MorphNetmodels. Finally, we found that
both the learning rate and the λ parameter affects the converged FLOPs, but
just the λ parameter by itself suffices to traverse the range of desirable FLOPs.

C ResNet101 on JFT

The FLOP regularizer λ-s used in Figure 5 on JFT were 0.7, 1.0, 1.3 and 2
times 10−9. The size regularizer λ-s were 0.7, 1 and 3 times 10−7. The width
multiplier values were 1.0, 0.875, 0.75, 0.625, 0.5, and 0.375. Figure 2 illustrates
the structures learned when applying these regularizers on ResNet101.

2



10 20 40 80
FLOPs per inference (×109)

0.45

0.50

0.55

0.60
A

cc
u
ra

cy

Width multiplier

FLOP regularizer

Figure 1: ImageNet evaluation accuracy for various MobileNets on 128 × 128
images using both a näıve width multiplier (red circles) and a sparsifying FLOP
regularizer (blue squares).

25

50

75

100

U
n
it

 W
id

th

Block 1

FLOP Regularizers

Size Regularizers

Grown Network

50

100

150

200
Block 2

100

200

300

400
Block 3

200

400

600

800
Block 4

Figure 2: Each of the four figures show the width of units in ResNet101 blocks
(1-4). The green (blue) shaded lines represent different strength of the FLOP
(size) regularizer. The purple line represents the unit width of a model expanded
from a FLOP-regularized ResNet101 model so that the number of FLOPs-
matches these of the seed model. One can observe that increasing strengths
of the FLOP regularizer (darker blue) remove more and more neurons from all
blocks, and remove entire residual units (layers) from all blocks except for Block
4. Increasing the strength of the size regularizer (darker green) mainly removes
neurons from Block 4.

D Stability of MorphNet

In this section, we study the stability of MorphNetwith Inception V2 model
on the ImageNet dataset. We trained the Inception V2 model regularized by

3



0 50 100 150 200 250 300 350 400
Average number of filters

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
R

e
la

ti
v
e
 s

ta
n
d
a
rd

 d
e
v
ia

ti
o
n

Figure 3: A scatter plot of relative standard deviations v.s. average number of
filters of each layer in ImageNet Inception V2 model. The standard deviation
was calculated over the results of 10 independent runs of Inception V2 with a
FLOP regularizer of λ = 1.3 · 10−9, using the same hyperparameter configura-
tion.

FLOP regularizer with a constant learning rate of 10−3. We also set the value
of λ to be 1.3 × 10−9. The training procedure was repeated independently for
10 times. We extracted the final architecture, e.g. the number of filters in
each layer, generated by MorphNetfrom each run, and computed the relative
standard deviations2 (RSTD) for the number of filters in each layer of the In-
ception V2 model across the 10 independent runs. Figure 3 shows the scatter
plot of RSTD for the ImageNet Inception V2 model. Such results show that
the number of filters in most of the layers does not change too much across
different runs of MorphNetwith the same parameter configuration. Few of the
layers have slightly large RSTD. However the number of filters in these layers is
small, which means the absolute changes of the number of filters in these layers
are still quite small across independent runs. Figure 4 shows the scatter plot
of FLOPs v.s. test accuracy of Inception V2 model retrained over ImageNet
dataset with the network architectures generated by the 10 independent runs of
MorphNetwith FLOPs regularizer. As we can see from this figure, the FLOPs
and test accuracies from different runs all converged to the same region with
a relative standard deviation of 1.12% and 0.208% respectively, which are

2Standard deviation divided by the mean.

4



1.27 1.28 1.29 1.30 1.31 1.32
FLOPs 1e9

0.705

0.706

0.707

0.708

0.709

0.710

0.711
A

cc
u
ra

cy

Figure 4: FLOPs v.s. test accuracy for Inception V2 model on the ImageNet
dataset. Each point represents an independent run of Inception V2 with a FLOP
regularizer of λ = 1.3 ·10−9, using the same hyperparameter configuration. The
differences in the FLOP counts of the resulting architectures and in their test
accuracies is shown in the figure. The relative standard deviation for FLOPs
and test accuracy across 10 runs are 1.12% and 0.208% respectively.

relatively small. All of these results demonstrate that the MorphNetis capable
of generating pretty stable DNN architectures under constrained computation
resources.

5



E Extensions of the method

We have restricted the discussion and evaluation in this paper to optimizing only
the output widths O1:M of all layers. However, our iterative process of shrinking
via a sparsifying regularizer and expanding via a uniform multiplicative factor
easily lends itself to optimizing over other aspects of network design.

For example, to determine filter dimensions and network depth, previous
work (4) has proposed to leverage Group LASSO and residual connections to in-
duce structured sparsity corresponding to smaller filter dimensions and reduced
network depth. This gives us a suitable shrinking mechanism. For expansion,
one may reuse the idea of the width multiplier to uniformly expand all filter
dimensions and network depth. To avoid a substantially larger network, it may
be beneficial to incorporate some rules regarding which filters will be uniformly
expanded (e.g.,by observing which filters were least affected by the sparsifying
regularizer; or more simply by random selection).

References

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, et al. Tensorflow: Large-scale machine learning on
heterogeneous systems, 2015. Software available from tensorflow. org, 1, 2015.

[2] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. Inverted residuals
and linear bottlenecks: Mobile networks for classification, detection and segmen-
tation. In Computer Vision and Pattern Recognition, 2018. CVPR 2018. IEEE
Conference on. IEEE, 2018.

[3] T. Tieleman and G. Hinton. Lecture 6.5-rmsprop: Divide the gradient by a run-
ning average of its recent magnitude. COURSERA: Neural networks for machine
learning, 4(2):26–31, 2012.

[4] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning structured sparsity
in deep neural networks. In Advances in Neural Information Processing Systems,
pages 2074–2082, 2016.

6



Layer name iteration 0 iteration 1 iteration 2
Conv2d 1a 7x7 64 78 86
Conv2d 2b 1x1 64 51 25
Conv2d 2c 3x3 192 217 309

Mixed 3b/Branch 0/Conv2d 0a 1x1 64 108 170
Mixed 3b/Branch 1/Conv2d 0a 1x1 64 81 0
Mixed 3b/Branch 1/Conv2d 0b 3x3 64 73 0
Mixed 3b/Branch 2/Conv2d 0a 1x1 64 73 112
Mixed 3b/Branch 2/Conv2d 0b 3x3 96 42 63
Mixed 3b/Branch 2/Conv2d 0c 3x3 96 61 96
Mixed 3b/Branch 3/Conv2d 0b 1x1 32 52 69
Mixed 3c/Branch 0/Conv2d 0a 1x1 64 108 170
Mixed 3c/Branch 1/Conv2d 0a 1x1 64 15 24
Mixed 3c/Branch 1/Conv2d 0b 3x3 96 8 13
Mixed 3c/Branch 2/Conv2d 0a 1x1 64 19 0
Mixed 3c/Branch 2/Conv2d 0b 3x3 96 0 0
Mixed 3c/Branch 2/Conv2d 0c 3x3 96 17 0
Mixed 3c/Branch 3/Conv2d 0b 1x1 64 108 168
Mixed 4a/Branch 0/Conv2d 0a 1x1 128 130 75
Mixed 4a/Branch 0/Conv2d 1a 3x3 160 154 82
Mixed 4a/Branch 1/Conv2d 0a 1x1 64 54 66
Mixed 4a/Branch 1/Conv2d 0b 3x3 96 86 69
Mixed 4a/Branch 1/Conv2d 1a 3x3 96 154 154
Mixed 4b/Branch 0/Conv2d 0a 1x1 224 377 573
Mixed 4b/Branch 1/Conv2d 0a 1x1 64 108 121
Mixed 4b/Branch 1/Conv2d 0b 3x3 96 159 107
Mixed 4b/Branch 2/Conv2d 0a 1x1 96 161 124
Mixed 4b/Branch 2/Conv2d 0b 3x3 128 178 53
Mixed 4b/Branch 2/Conv2d 0c 3x3 128 181 83
Mixed 4b/Branch 3/Conv2d 0b 1x1 128 201 258
Mixed 4c/Branch 0/Conv2d 0a 1x1 192 325 496
Mixed 4c/Branch 1/Conv2d 0a 1x1 96 134 13
Mixed 4c/Branch 1/Conv2d 0b 3x3 128 147 11
Mixed 4c/Branch 2/Conv2d 0a 1x1 96 144 162
Mixed 4c/Branch 2/Conv2d 0b 3x3 128 154 118

Table 1:

7



Layer name iteration 0 iteration 1 iteration 2
Mixed 4c/Branch 2/Conv2d 0c 3x3 128 135 146
Mixed 4c/Branch 3/Conv2d 0b 1x1 128 217 303
Mixed 4d/Branch 0/Conv2d 0a 1x1 160 271 424
Mixed 4d/Branch 1/Conv2d 0a 1x1 128 105 94
Mixed 4d/Branch 1/Conv2d 0b 3x3 160 118 90
Mixed 4d/Branch 2/Conv2d 0a 1x1 128 51 80
Mixed 4d/Branch 2/Conv2d 0b 3x3 160 39 61
Mixed 4d/Branch 2/Conv2d 0c 3x3 160 58 91
Mixed 4d/Branch 3/Conv2d 0b 1x1 96 162 255
Mixed 4e/Branch 0/Conv2d 0a 1x1 96 162 255
Mixed 4e/Branch 1/Conv2d 0a 1x1 128 110 64
Mixed 4e/Branch 1/Conv2d 0b 3x3 192 130 82
Mixed 4e/Branch 2/Conv2d 0a 1x1 160 32 50
Mixed 4e/Branch 2/Conv2d 0b 3x3 192 22 35
Mixed 4e/Branch 2/Conv2d 0c 3x3 192 36 57
Mixed 4e/Branch 3/Conv2d 0b 1x1 96 162 255
Mixed 5a/Branch 0/Conv2d 0a 1x1 128 217 324
Mixed 5a/Branch 0/Conv2d 1a 3x3 192 325 482
Mixed 5a/Branch 1/Conv2d 0a 1x1 192 151 237
Mixed 5a/Branch 1/Conv2d 0b 3x3 256 73 113
Mixed 5a/Branch 1/Conv2d 1a 3x3 256 404 635
Mixed 5b/Branch 0/Conv2d 0a 1x1 352 596 936
Mixed 5b/Branch 1/Conv2d 0a 1x1 192 321 11
Mixed 5b/Branch 1/Conv2d 0b 3x3 320 535 17
Mixed 5b/Branch 2/Conv2d 0a 1x1 160 271 258
Mixed 5b/Branch 2/Conv2d 0b 3x3 224 379 178
Mixed 5b/Branch 2/Conv2d 0c 3x3 224 379 200
Mixed 5b/Branch 3/Conv2d 0b 1x1 128 217 341
Mixed 5c/Branch 0/Conv2d 0a 1x1 352 596 930
Mixed 5c/Branch 1/Conv2d 0a 1x1 192 257 102
Mixed 5c/Branch 1/Conv2d 0b 3x3 320 168 110
Mixed 5c/Branch 2/Conv2d 0a 1x1 192 313 300
Mixed 5c/Branch 2/Conv2d 0b 3x3 224 272 146
Mixed 5c/Branch 2/Conv2d 0c 3x3 224 178 226
Mixed 5c/Branch 3/Conv2d 0b 1x1 128 217 341

Table 2:

8


	Inception V2 trained on ImageNet
	MobileNet Training Details
	Training protocol
	Trainer
	Observations

	ResNet101 on JFT
	Stability of MorphNet
	Extensions of the method

