MorphNet: Fast & Simple Resource-Constrained
Structure Learning of Deep Networks
Supplementary material

A Inception V2 trained on ImageNet

In this section we provide the technical details regarding the the experiments in
Section 5.2 of the paper.

When training with a FLOP regularizer, we used a learning rate of 1073,
and we kept it constant in time. The values of)\ that were used to obtain the
points displayed in Figure 4 are 0.7, 1.0, 1.3, 2.0 and 3.0, all times 1077,

Tables 1 and 2 below lists the size of each convolution in Inception V2, for
the seed network and for the two MorphNetiterations. The names of the layers
are the ones generated by this' code. Each column represents a learned DNN
structure, obtained from the previous one by applying a FLOP regularizer with
A = 1.3-107? and then the width multiplier that was needed to restore the
number of FLOPs to the initial value of 3.88 - 10°. The width multipliers at
iteration 1 and 2 respectively were 1.692 and 1.571.

B MbobileNet Training Details

B.1 Training protocol

Our models operate on 128 x 128 images. The training procedure is a slight
variant of running the main MorphNetalgorithm for one iteration. This vari-
ability gives better results overall and is crucial for MorphNetto overtake the
50% width-multipler model (see below). The procedure is as follows:

1. The full network (width-multipler of 1.0 on 128 x 128 image input) was
first trained for 2 million steps (which is the typical number of steps for a
network’s performance to plateau as observed from training models with
similar model sizes). Note that training smaller networks (e.g. with a
width-multiplier of 0.25) takes significantly more steps, e.g. around 10
millions steps, to converge.

1 https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/slim/python/slim/nets/inception_v2.py

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/slim/python/slim/nets/inception_v2.py

2. The checkpoint was used to initialize MorphNettraining, which goes on for
an additional 10 million steps or until the FLOPs of the active channels
converge, whichever is longer. We tried a range of A values € {3,4,...,10,11} x
107 to ensure that the converged FLOPs remain close to the FLOPs of
the width-multiplier baselines.

3. We took the converged checkpoint and extracted a pruned network (both
structure and weights) that consists of only the active channels.

4. Finally, we fine-tuned the pruned network using a small learning rate
(0.0013). This is merely to restore moving average statistics for batch-
normalization, and normally takes a negligible number, e.g. 20k, of steps.
While training for longer keeps improving the accuracy, simply training
for 20k steps suffices to outperform models with width multipliers.

All training steps use the same optimizer, which is discussed below.

B.2 Trainer

We use the same trainer from MobileNet v2 (2), described below. We trained
with the RMSProp optimizer (3) implemented in Tensorflow (1) with a batch-
size of 96. The initial learning rate was chosen from {0.013,0.045}, unless
otherwise specified. The learning rate decays by a factor of 0.98 every 2.5
epochs. Training uses 16 workers asynchronously.

B.3 Observations

The total training time for each attempted A value is around 2 + 10 = 12
million steps, which is less than twice the number of steps (around 10 million)
for training a regular network. Although multiple A values are required, each
one of them contributes to the “optimal” FLOPs-vs-accuracy tradeoff, as shown
in figure 1. The “optimality” is defined in a narrow sense that no model is
dominated in both FLOP and accuracy by another. By contrast, the 50% width-
multipler model is dominated by the MorphNetmodels. Finally, we found that
both the learning rate and the A parameter affects the converged FLOPs, but
just the A parameter by itself suffices to traverse the range of desirable FLOPs.

C ResNetl101 on JFT

The FLOP regularizer A-s used in Figure 5 on JFT were 0.7, 1.0, 1.3 and 2
times 1072, The size regularizer A-s were 0.7, 1 and 3 times 10~7. The width
multiplier values were 1.0, 0.875, 0.75, 0.625, 0.5, and 0.375. Figure 2 illustrates
the structures learned when applying these regularizers on ResNet101.

0.60 =

o
9
Ul
\
N

Accuracy
\
\

o
Ul
)
\
\
s

RAP - - Width multiplier

[e .
0.45 o’ m- FLOP regularizer

10 20 40 80
FLOPs per inference (x10°)

Figure 1: ImageNet evaluation accuracy for various MobileNets on 128 x 128
images using both a naive width multiplier (red circles) and a sparsifying FLOP
regularizer (blue squares).

100 Block 1 200 Block 2 400 Block 3 800 Block 4

—— FLOP Regularizers
75 —— Size Regularizers 150 300 600 \/\
—— Grown Network

50 100

Unit Width

25 50

Figure 2: Each of the four figures show the width of units in ResNet101 blocks
(1-4). The green (blue) shaded lines represent different strength of the FLOP
(size) regularizer. The purple line represents the unit width of a model expanded
from a FLOP-regularized ResNet101 model so that the number of FLOPs-
matches these of the seed model. One can observe that increasing strengths
of the FLOP regularizer (darker blue) remove more and more neurons from all
blocks, and remove entire residual units (layers) from all blocks except for Block
4. Increasing the strength of the size regularizer (darker green) mainly removes
neurons from Block 4.

D Stability of MorphNet

In this section, we study the stability of MorphNetwith Inception V2 model
on the ImageNet dataset. We trained the Inception V2 model regularized by

0.9,
0.8
0.7 ®
0.6
0.5

[]
04 @

[]

[]

0.3

Relative standard deviation

0.2 S,
0.1 P e o

0.0) % o2 a a ©® -

0 50 100 150 200 250 300 350 400
Average number of filters

Figure 3: A scatter plot of relative standard deviations v.s. average number of
filters of each layer in ImageNet Inception V2 model. The standard deviation
was calculated over the results of 10 independent runs of Inception V2 with a
FLOP regularizer of A = 1.3 - 107?, using the same hyperparameter configura-
tion.

FLOP regularizer with a constant learning rate of 1072, We also set the value
of X to be 1.3 x 107?. The training procedure was repeated independently for
10 times. We extracted the final architecture, e.g. the number of filters in
each layer, generated by MorphNetfrom each run, and computed the relative
standard deviations? (RSTD) for the number of filters in each layer of the In-
ception V2 model across the 10 independent runs. Figure 3 shows the scatter
plot of RSTD for the ImageNet Inception V2 model. Such results show that
the number of filters in most of the layers does not change too much across
different runs of MorphNetwith the same parameter configuration. Few of the
layers have slightly large RSTD. However the number of filters in these layers is
small, which means the absolute changes of the number of filters in these layers
are still quite small across independent runs. Figure 4 shows the scatter plot
of FLOPs v.s. test accuracy of Inception V2 model retrained over ImageNet
dataset with the network architectures generated by the 10 independent runs of
MorphNetwith FLOPs regularizer. As we can see from this figure, the FLOPs
and test accuracies from different runs all converged to the same region with
a relative standard deviation of 1.12% and 0.208% respectively, which are

2Standard deviation divided by the mean.

0.711

0.710 ®

0.709

Accuracy
o
~
o
oo
[]
[]
[]

0.707
0.706

0.705 a
1.27 1.28 1.29 1.30 1.31 1.32

FLOPs 1e9

Figure 4: FLOPs v.s. test accuracy for Inception V2 model on the ImageNet
dataset. Each point represents an independent run of Inception V2 with a FLOP
regularizer of A\ = 1.3-107?, using the same hyperparameter configuration. The
differences in the FLOP counts of the resulting architectures and in their test
accuracies is shown in the figure. The relative standard deviation for FLOPs
and test accuracy across 10 runs are 1.12% and 0.208% respectively.

relatively small. All of these results demonstrate that the MorphNetis capable
of generating pretty stable DNN architectures under constrained computation
resources.

E Extensions of the method

We have restricted the discussion and evaluation in this paper to optimizing only
the output widths O;.)s of all layers. However, our iterative process of shrinking
via a sparsifying regularizer and expanding via a uniform multiplicative factor
easily lends itself to optimizing over other aspects of network design.

For example, to determine filter dimensions and network depth, previous
work (4) has proposed to leverage Group LASSO and residual connections to in-
duce structured sparsity corresponding to smaller filter dimensions and reduced
network depth. This gives us a suitable shrinking mechanism. For expansion,
one may reuse the idea of the width multiplier to uniformly expand all filter
dimensions and network depth. To avoid a substantially larger network, it may
be beneficial to incorporate some rules regarding which filters will be uniformly
expanded (e.g.,by observing which filters were least affected by the sparsifying
regularizer; or more simply by random selection).

References

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, et al. Tensorflow: Large-scale machine learning on
heterogeneous systems, 2015. Software available from tensorflow. org, 1, 2015.

[2] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. Inverted residuals
and linear bottlenecks: Mobile networks for classification, detection and segmen-
tation. In Computer Vision and Pattern Recognition, 2018. CVPR 2018. IEEE
Conference on. IEEE, 2018.

[3] T. Tieleman and G. Hinton. Lecture 6.5-rmsprop: Divide the gradient by a run-
ning average of its recent magnitude. COURSERA: Neural networks for machine
learning, 4(2):26-31, 2012.

[4] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning structured sparsity
in deep neural networks. In Advances in Neural Information Processing Systems,
pages 2074-2082, 2016.

Layer name

iteration 0

iteration 1

iteration 2

Conv2d_1a_7x7

Conv2d_2b_1x1

Conv2d_2c¢_3x3
Mixed_-3b/Branch_0/Conv2d_0a_1x1
Mixed_3b/Branch_1/Conv2d_0a_1x1
Mixed-3b/Branch_1/Conv2d-0b_3x3
Mixed_3b/Branch_2/Conv2d_0a_1x1
Mixed_3b/Branch_2/Conv2d_0b_3x3
Mixed_-3b/Branch_2/Conv2d_0c_3x3
Mixed-3b/Branch_3/Conv2d_0b_1x1
Mixed_3c/Branch_0/Conv2d_0a_1x1
Mixed_3c/Branch_1/Conv2d_0a_1x1
Mixed_3c/Branch_1/Conv2d_0b_3x3
Mixed_3c¢/Branch_2/Conv2d_0a_1x1
Mixed_-3c/Branch_2/Conv2d_0b_3x3
Mixed_3c/Branch_2/Conv2d_0c_3x3
Mixed_3c/Branch_3/Conv2d_0b_1x1
Mixed_4a/Branch_0/Conv2d_0a_1x1
Mixed_4a/Branch_0/Conv2d_la_3x3
Mixed_4a/Branch_1/Conv2d_0a_1x1
Mixed_4a/Branch_1/Conv2d_0b_3x3
Mixed_4a/Branch_1/Conv2d_la_3x3
Mixed_4b/Branch_0/Conv2d_0a_1x1
Mixed_4b/Branch_1/Conv2d_0a_1x1
Mixed_4b/Branch_1/Conv2d_0b_3x3
Mixed-4b/Branch-2/Conv2d_0a_1x1
Mixed-4b/Branch_2/Conv2d-0b_3x3
Mixed_4b/Branch_2/Conv2d_0c_3x3
Mixed_4b/Branch_3/Conv2d_0b_1x1
Mixed_4¢/Branch_0/Conv2d_0a_1x1
Mixed_4c/Branch_1/Conv2d_0a_1x1
Mixed_4c/Branch_1/Conv2d-0b_3x3
Mixed_4¢/Branch_2/Conv2d_Oa_1x1
Mixed_4c/Branch_2/Conv2d_0b_3x3

64
64
192
64
64
64
64
96
96
32
64
64
96
64
96
96
64
128
160
64
96
96
224
64
96
96
128
128
128
192
96
128
96
128

78
o1
217
108
81
73
73
42
61
92
108
15
8
19
0
17
108
130
154
o4
86
154
377
108
159
161
178
181
201
325
134
147
144
154

86
25
309
170
0
0
112
63
96
69
170
24
13
0
0
0
168
75
82
66
69
154
573
121
107
124
53
33
258
496
13
11
162
118

Table 1:

Layer name

iteration 0

iteration 1

iteration 2

Mixed_4c/Branch_2/Conv2d_0c_3x3
Mixed_4c/Branch_3/Conv2d_0b_1x1
Mixed_4d/Branch_0/Conv2d_0a_1x1
Mixed_4d/Branch_1/Conv2d_0a_1x1
Mixed_4d/Branch_1/Conv2d_0b_3x3
Mixed_4d/Branch_2/Conv2d_0a_1x1
Mixed_4d/Branch_2/Conv2d_0b_3x3
Mixed_4d/Branch_2/Conv2d_0c_3x3
Mixed_4d/Branch_3/Conv2d_0b_1x1
Mixed_4e/Branch_0/Conv2d_0a_1x1
Mixed_4e/Branch_1/Conv2d_0a_1x1
Mixed_4e/Branch_1/Conv2d-0b_3x3
Mixed_4e/Branch_2/Conv2d_0a_1x1
Mixed_4e/Branch_2/Conv2d_0b_3x3
Mixed_4e/Branch_2/Conv2d_0c_3x3
Mixed_4e/Branch_3/Conv2d_0b_1x1
Mixed_5a/Branch_0/Conv2d_0a_1x1
Mixed_5a/Branch_0/Conv2d_la_3x3
Mixed_5a/Branch_1/Conv2d_0a_1x1
Mixed_5a/Branch_1/Conv2d_0b_3x3
Mixed_5a/Branch_1/Conv2d_la_3x3
Mixed_5b/Branch_0/Conv2d_0a_1x1
Mixed_5b/Branch_1/Conv2d_0a_1x1
Mixed_5b/Branch_1/Conv2d_0b_3x3
Mixed_5b/Branch_2/Conv2d_0a_1x1
Mixed_5b/Branch_2/Conv2d_0b_3x3
Mixed_5b/Branch_2/Conv2d_0c_3x3
Mixed_5b/Branch_3/Conv2d_0b_1x1
Mixed_5¢/Branch_0/Conv2d_0a_1x1
Mixed_5¢/Branch_1/Conv2d_0a_1x1
Mixed_5¢/Branch_1/Conv2d_0b_3x3
Mixed_5c¢/Branch_2/Conv2d_0a_1x1
Mixed_5¢/Branch_2/Conv2d-0b_3x3
Mixed_5¢/Branch_2/Conv2d_0c_3x3
Mixed_5¢/Branch_3/Conv2d_0b_1x1

128
128
160
128
160
128
160
160
96
96
128
192
160
192
192
96
128
192
192
256
256
352
192
320
160
224
224
128
352
192
320
192
224
224
128

135
217
271
105
118
51
39
58
162
162
110
130
32
22
36
162
217
325
151
73
404
596
321
535
271
379
379
217
596
257
168
313
272
178
217

146
303
424
94
90
80
61
91
255
255
64
82
50
35
o7
255
324
482
237
113
635
936
11
17
258
178
200
341
930
102
110
300
146
226
341

Table 2:

	Inception V2 trained on ImageNet
	MobileNet Training Details
	Training protocol
	Trainer
	Observations

	ResNet101 on JFT
	Stability of MorphNet
	Extensions of the method

