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Abstract

In this supplementary material, we present the proofs for
Propositions 1&2 of the main paper and we provide a full
derivation of Equation (7) of the main paper, as well as
missing implementation details and missing experimental
analyses on accuracy vs. percentage of privileged infor-
mation for image classification.

1. Proof of Proposition 1

The proof of proposition 1 is available at [10] as Exam-
ple 4. However, we include here a simpler proof for the sake
of completeness.
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In (a), we use the fact that the space has an ε-cover; and
denote the cover as {Cj}j∈[K] such that each Cj has di-
ameter at most ε. We further define an auxiliary variable
µj = p((x, y) ∈ Cj) and nj =

∑
i 1[(xi, yi) ∈ Cj ] and

used the triangle inequality. In (b), we use i ∈ nj to rep-
resent (xi, yi) ∈ Cj . Finally, in (c) we use the fact that
each ball has diameter at most ε and the loss function is
λl-Lipschitz.

We can boundE[l(x, y)|z ∈ Cj ] with a maximum loss L
and use the Breteganolle-Huber-Carol inequality (cf Propo-
sition A6.6 of [9]) in order to bound

∑
j µj −

|nj |
n .

Combining all, we observe that with probability at least
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2. Proof of Proposition 2
The proof of Proposition 2 will closely follow the proof

of Proposition 4 and Lemma 5 in [3]. Our main techni-
cal tool will be controlling the variance in Bernstein-type
bounds to obtain an upper bound which has rate O( 1

n ).
Consider the output of a CNN, given an image as z, with
abuse of notation (we used z to represent the representation
layer, however for the sake of consistency with [3] we de-
note z as the output here). Every activation in the neuron
can be written as a sum over the paths between the input
layer and the representation as zi =

∑
p αpxp, where xp is

the input neuron connected to the path and αp is the weight
of the path. One interesting property is the fact that this
weight is simply the multiplication of all weights over the
path wp with a binary value. When only max-pooling and
ReLU non-linearities are used, that binary value is 1 if all
activations are on and 0 if at least one of them is off. This is
due to the fact that max-pooling and ReLU either multiply
the input with a value of 1 or 0. We call this binary variable
σ(x,w). Hence, each entry is;

zi =
∑
p

xpσp(x,w)wp (1)

We can note z̄ = [x0̄σp(x,w), · · · , xP̄σp(x,w)] as a vector
with dimension equal to the number of paths. Next, we can
explicitly compute the generalization bound over l2 loss as;
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We will separately bound each term in the following sub-
sections. We first need to prove a useful lemma we will use
in the following proofs.

Lemma 1. Matrix Bernstein inequality with variance
control (corollary to Theorem 1.4 in [8]). Consider a fi-
nite sequence {Mi} of independent, self-adjoint matrices
with dimension d. Assume that each random matrix satis-
fies E[Mi] = 0 and λmax(Mi) ≤ R almost surely. Let
γ2 = ‖

∑
iE[M2

i ]‖2. Then, for any δ > 0, if t ≤ γ; with
probability at least 1− δ,
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Proof. Theorem 1.4 by Tropp [8] states that for all t ≥ 0,
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plied.

Bounding zᵀz term: This will follow directly from the
Matrix form of the Bernstein inequality, which is stated as
Lemma 1. By using ξ,Mz and P as defined in the main
text, Lemma 1 shows that with probability at least 1− δ,
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By using the definition of the Matrix norm and the Cauchy-
Schwarz Inequality, one can show that;
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where µc = p(yc = 1). Using this fact, we can state;
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In (a), we noted the training examples from class c as nc.
We can use the Bernstein inequality, which states that
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V ar{zi} ≤ δ, we can state that with probability at least
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Here εy is a term which bounds the variance of the class
label distribution, which is defined in the next section.

Bounding yᵀy term: This term is both independent of the
learning algorithm and the weights learned and can be sim-
ply made to vanish to zero if the number of samples per
class directly follows the population densities. Hence, we
do not include a specific rate for this quantity and simply
denote it with εy and assume that it goes to 0 with a rate
better or equivalent to a linear rate. See the main text for a
detailed explanation as to why we choose to not include εy
in the analysis.

After bounding each term in (2), we can now state the
proof for Proposition 2.

Proof. By using the decomposition in (2) and the bounds in
(4,7), we can state that
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3. Derivation of (7, Main Paper)
In equation (7) of the main paper, we stated that

KL(pw(z|x, x?)||pw(z)) ∼ ‖ log h?(x?;w?)‖ (8)

In this section, we formally derive this claim using
the log-Uniform assumption. In order to compute
KL(pw(z|x, x?)||pw(z)), we need to choose a prior distri-
bution for z. As discussed in depth in [1], the use of ReLU
activations empirically suggests that a good choice for this
prior would be the log-uniform distribution. Hence, we con-
sider the log-Uniform prior. We first use the definition of the
KL-divergence as;

KL(pw(z|x, x?)||pw(z))

= −Epw(z|x,x?)[log pw(z)] + Epw(z|x,x?)[log pw(z|x, x?)]
(9)

Since we know the distribution of pw(z|x, x?) as
N (ho(x,wo), h?(x?, w?)), and using the assumption that
the covariance matrix is diagonal,

Epw(z|x,x?)[log pw(z|x, x?)] =

∥∥∥∥1

2
(1 + log 2πh?(x?;w?))
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If we use the log-uniform prior, the first term in the KL-
divergence can be computed as;

Epw(z|x,x?)[log pw(z)] = Epw(z|x,x?)[c1 + c2z] = c (11)

where we use the fact that the logarithm of the pdf of a log-
uniform distribution is c1 + c2z with appropriate constants.
Furthermore, the norm of h0(x,w) does not affect the out-
put as it is followed with a soft-max operation, which is in-
variant up-to a scalar multiplication. Hence, we can safely
consider its norm to be a constant c. Using both terms,

KL(pw(z|x, x?)||pw(z)) = c̄ log h?(x?;w?)‖ − c (12)

with appropriate constants c̄ and c. We do not include c
in the optimization since an additional constant does not
change the result of the optimization and we include c̄ in
the trade-of parameter β.

4. Additional Results
In this section, we provide two experimental results

missing in the paper: first, an analysis of accuracy vs. the
amount of x? provided for image classification and second,
a comparison of our method with baselines for the task of
ImageNet image classification with 200K images. We also
provide further qualitative analysis of the relationship be-
tween variance control and our method.

Accuracy vs. Partial x? for Image Classification: In the
main text, we already studied the case where only a partial



x? is available and showed that even a small percentage of
x? is enough for multi-modal machine translation experi-
ments. Due to the limited space, we provide the same ex-
periment for the image classification here in Figure 1 and
show that as long as a small percentage of the dataset has
privileged information, our algorithm is effective.
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Figure 1. Accuracy vs amount of privileged information (x?) avail-
able for image classification using 75K ImageNet images. We plot
top-1, single crop accuracy.

ImageNet with 200K Images In the main paper, we per-
formed the ImageNet image classification experiment with
only 75K training images (a mid-sized dataset) and showed
that our method learns significantly faster (by reaching
higher accuracy) than all baselines. In order to answer the
question, would the result still hold if we had up to 200K
images (a larger-sized dataset) ? We put the results in Ta-
ble 1 and the results suggest that our method matches the
performance of the best baselines in the 200K case. Hence,
we can conclude that our method, i.e. marginalization, pro-
vides no harm in a large-scale dataset regime.

Table 1. We compare our method’s performance with several
baselines. We train with 200 images per each of the 1000 Im-
ageNet classes, leaving us with 200 ×103 images in total. We
outperform each model with a significant margin. Since we utilize
only 600K (or less) of the 1.28M images from the CLS-LOC Im-
ageNet dataset across all of our experiments, we use a randomly
selected subset of the remaining 628K images as a hold-out set for
evaluation. Accuracy is given in %, from 0 to 100. Multi-crop ac-
curacy is computed not via individual voting on the correct class
by each crop, but rather by taking an arg max over classes after
summing the softmax score vectors of each individual crop.

Single Crop Multi-Crop
Model top-1 top-5 top-1 top-5

No-x? [6] 55.99 79.21 58.60 80.98

GoCNN [12] 50.73 75.39 53.37 77.61
Modal. Hallucination [2] 52.28 76.33 55.66 78.79
Our LUPI 55.20 78.72 58.17 80.90
Gaussian Dropout [7] 55.43 78.77 - -
MIML-FCN [11]/ResNet-50 56.00 78.83 59.14 81.05
Multi-Task w/ Bbox 56.32 79.45 59.29 81.48

5. Additional Qualitative Analysis of the
Method

In Figure (2), we visualize the computed variance of the
heteroscedastic dropout. Figure (2) supports our hypothesis

Figure 2. Visualization of the computed variance of our het-
eroscedastic dropout for 8000 random samples from the validation
set that our algorithm mis-classifies, as well as 8000 random sam-
ples it correctly classifies. The plot is a heatmap of activations,
with dimensions (num images×num channels).

that our algorithm controls the variance since mis-classified
examples are expected to have high variance/uncertainty
and need to be multiplied with a low value to be controlled.
The visualization is fairly uniform, especially for misclas-
sified examples, but we believe the h? has interesting in-
formation in it which can be further utilized in applications
like confidence estimation and is an interesting future work
direction.

6. Additional Implementation Details
In this section, we give all of the implementation details

of our algorithm, as well as the implementation details of
the baselines we used in our experimental study. In order
to ensure full reproducibility of all experiments, we share
our source code 1. We found that in all experiments that
could converge, from training set sizes of 32K up to 600K
images, an adaptive 10x learning rate decay schedule sig-
nificantly outperforms the traditional 30-epoch fixed 10x
learning rate decay schedule. We consistently observe per-
formance gains of 510% with the learning rate schedule set
adaptively according to whether or not performance on the
hold-out validation set has reached a plateau. Unless other-
wise noted, we utilize SGD with momentum set to 0.9 for all
models, and a learning rate schedule that starts at 1× 10−2,
as [6] suggests.

Heteroscedastic Dropout Implementation: We set λ =
100 in all experiments, although we found this was not a

1https://github.com/johnwlambert/dlupi-heteroscedastic-dropout



meaningful hyperparameter. We found the training to be
prone to convergence in local optima and restarted training
if the distribution over class logits was still uniform after 30
epochs. We use a weight decay of 1 × 10−4 in all experi-
ments, ADAM, and a learning rate of 1×10−3, as described
in Section 3.2 of the paper. We cropped images to a standard
size of 224× 224 before feeding them into the network.

We scale the batch size m with respect to the size of the
training set. For example, for the 75K model, we use a batch
size of 64. For the 200K Model, we use a batchsize of 128.
For the 600K model, we utilize curriculum learning and a
batch size of 256. We first train the fc layers in the x? tower
for 8 epochs with ADAM, a batch size of 128, and a learning
rate 1 × 10−3, and then fix the x? fc weights and fine-tune
the fc layers of the x tower with the ADAM optimizer and
a learning rate of 1× 10−7 and a batch size of 256.

No-x?: A baseline model without access to any privileged
information. We use a batch size of 256.

Gaussian Dropout [7]: We draw noise from
N
(
1, diag(1)

)
because the authors of [7] state that σ

should be set to
√

(1−drop prob)

drop prob)
. Empirically, we found

that setting σ = 0.1 performed slightly better. We did not
include a regularization loss on the covariance matrices of
the random noise. We use SGD with momentum set to 0.9,
a learning rate of 1× 10−2, and a batch size of 256.

Multi-Task with Bbox: We add one extra head to the
VGG network that, just as the classification head, accepts
pool5 activations. This regression head produces the center
coordinates (xcent, ycent) and width and height of a bound-
ing box, all normalized to [0, 1]. As our loss function, we
use a weighted sum of cross entropy loss and λ = 0.1 times
the bounding box regression loss. We use a batch size of
200 instead of 256 because of GPU RAM constraints of
∼ 64 GB.

Multi-Task with Mask: In order to predict pixel-wise
probabilities between a background and foreground (object)
class, we require an auto-encoder network that can preserve
spatial information. We experiment with two architectures
(DeconvNet) [5] [4]. We chose the DeconvNet architecture
for its superior performance, which we attribute to its far
greater representation power than DCGAN (the DeconvNet
architecture utilizes 15 convolutions instead of the much
shallower 5 convolution architecture of the DCGAN gen-
erator/discriminator, versus 13 conv. layers in VGG)[4][5]
[6]. As our loss function, we use a weighted sum of cross-
entropy losses over classes and λ = 0.1 times the cross en-
tropy loss over masks . We use a batch size of 128 instead

of 256 because of GPU RAM constraints of ∼ 64 GB.

GoCNN [12] We found that the models could not con-
verge when the suppression loss (computed as the Frobe-
nius norm of the masked activations) is multiplied only by
(1/32), as the authors utilize in their work. We found that the
model could learn if the suppression loss was multiplied by
(1/320) or (1/3200) with ADAM, a learning rate of 1×10−3,
and a batch size of 256. We use a black and white (BW)
mask for x?.

Information Dropout [1] As we note in the main paper,
we found a VGG-16 network with two Information Dropout
layers, each succeeding one of the first two fully connected
layers, could only converge with a sigmoid nonlinearity in
the fc layers. We keep the ReLU nonlinearity in the con-
volutional layers. We train with a batch size of 128, set
β = 3.0, set αmaximum = 0.3, sample from a log-normal dis-
tribution (by exponentiating samples from a normal distri-
bution), and employ an improper log-uniform distribution
as our prior, as the authors used for their CIFAR experi-
ments.

MIML-FCN [11]: We compare the use of a VGG-16 or
ResNet-50 architecture, with a batch size of 256 and λ =
1 × 10−8, which we tuned manually by cross-validation.
For the ResNet-50 architecture, we start the learning rate
schedule at 1× 10−1. We share the convolutional layer pa-
rameters across both parameters, and thus find far superior
performance when x? is provided as an RGB mask, rather
than a black and white (BW) mask, because the privileged
information is more closely aligned with the input x.

Modality Hallucination [2]: Due to the memory require-
ments of 3 VGG towers with independent parameters, we
chose to share the feature representation in the convolu-
tional layers and to incorporate the hallucination loss be-
tween the fc1 activations of the depth and hallucination net-
works. We use a batch size of 128. For identical reasons as
those stated in the previous paragraph, RGB masks are a su-
perior representation for x? than BW masks for this model.
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