
Polarimetric Dense Monocular SLAM Supplementary Material

The supplementary document explains 1) the polariza-
tion camera; 2) the polarimetric phase-angle estimation al-
gorithm; and 3) the photometric error term in the energy
minimization. All of these are well-established techniques
and are presented to make our submission self-contained.

1. Polarization Camera

A polarization camera has an array of linear polarizers
in front of its CMOS sensor, where neighboring cells have
different polarizaiton angles. Figure 1 (b) illustrates such an
array. In this way, the four neighboring pixels will capture
images under different polarization angles. Assuming spa-
tial smoothness of the incoming signal, we can obtain four
images of different polarization from a single shoot in the
same spirit of demosaicing of the RGB Bayer pattern [5].
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Figure 1: (a) A Polarization camera with 8mm lens. (b)
An array of linear polarizers in front of its CMOS sensor,
capturing multiple polarizered images in a single shot.

2. Phase Angle Estimation

The scene radiance of an incident unpolarized light
through a linear polarizer at a polarization angle φpol is ex-
pressed as follows [1]:

I(φpol) =
Imax + Imin

2
+
Imax − Imin

2
cos(2(φpol−φ)).

(1)
The formula indicates that the radiance follows a cosine
curve within the range [Imin, Imax]. We have four mea-
surements per pixel over the four different polarization an-
gles (φpol = φ0, φ45, φ90, or φ135). These angles are given
by the calibration process and are constants. We use simple
linear and trigonometric algebra to solve φ. Specifically, we
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Figure 2: Computing the phase angle φ at two pixels
(marked with Green (High DOLP) and Blue (Low DOLP)
in Figure 3 (d)). Left and right are the cosine curve fitted
to the observations (red dots) before and after the flat-field
calibration.

rewrite the Equation (1) as:

I(φpol) =
Imax + Imin

2
+
Imax − Imin

2
cos(2φpol − 2φ)

=
Imax + Imin

2
+
Imax − Imin

2
cos 2φ cos 2φpol

+
Imax − Imin

2
sin 2φ sin 2φpol.

(2)

Let α = Imax+Imin
2 , β = Imax−Imin

2 cos 2φ, γ =
Imax−Imin

2 sin 2φ, the Equation (2) becomes:

I(φpol) = α+ β cos 2φpol + γ sin 2φpol. (3)

With the four measured intensities I(φ0), I(φ45), I(φ90),
and I(φ135), we build an overdetermined linear system:

1 cos 2φ0 sin 2φ0
1 cos 2φ45 sin 2φ45
1 cos 2φ90 sin 2φ90
1 cos 2φ135 sin 2φ135


αβ
γ

 =


I(φ0)
I(φ45)
I(φ90)
I(φ135)

 . (4)
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Figure 3: (a) Four images with different polarization angles. (b) Estimated azimuth angle map without Flat-Field cali-
bration (Right bar shows the phase angle) (c) With Flat-Field Corrected calibration. In (c) there is obvious /2-ambiguity,
e.g. shadow area bellow the book and the helmet are diffuse dominated while other area in table reflect the lighting and is
dominated by specular. (d) The DOLP map with two sampled pixel, the blue pixel sampled from low DOLP area while the
green sampled at High DOLP area. (e) The iso-depth contour computed with the corrected azimuth angle map (c).

We find the least squares solution [α β γ]T , and compute
the phase angle φ as

φ =

{
0 if β = 0
1
2 tan−1( γβ ) otherwise

. (5)

Figure 2 shows the phase-angle estimation process for
two pixels marked as green and blue in Figure 3 (d). The
blue pixel has a low degree of linear polarization (DOLP),
where the cosine curve fitting is noisy and produces a large
error without the flat-field calibration. For the red pixel with
high DOLP, this flat-field calibration is less critical, though
improvement is also evident. Note that DOLP (ρdolp) mea-
sures the relative strength of the linear polarized light [4]
and is given by:

ρdolp =
Imax − Imin
Imax + Imin

. (6)

Figure 3 (b) and (c) show the effects of the Flat-Field cal-
ibration over an entire image (Section 5). The calibration
has dramatic effects on low DOLP areas (e.g., the desktop),
while the angle estimation is accurate even without the cal-
ibration on high DOLP areas (e.g. the helmet).

3. Photometric term
The photometric term in the Equation (2) of the main

paper is a standard photo-consistency function based on im-
age intensities and gradients [2], defined between a source
keyframe I and a reference keyframe I′. The photometric
error for a pixel p with distance from the origin dp and sur-
face normal np is,

Ephoto(dp,np) = Σq∈N (p)w(p, q)ρ(q,H(dp,np)q) (7)

Here, N (p) denotes a local patch centered on pixel p
(13×13 in our implementation). The weightwmeasures the

color similarity at two pixels p and q asw(p, q) = e
||Ip−Iq||

γ ,

where Ip, Iq are the pixel intensity values at p, q respec-
tively. The matching cost ρ measures the similarity of two
pixels in image I and I′ respectively. More specifically,
given two corresponding pixels x and y, the cost is the color
and gradient differences combined by a weight α.

ρ(x, y) =(1− α) ·min(||Ix − I ′y||, γcol)
+ α ·min(||∇Ix −∇I ′y||, γgrad),

(8)

where the parameters γcol and γgrad are truncate thresholds
for better robustness. We fix α = 0.9, γcol = 10.0 and
γgrad = 2.0 in our implementation. The correspondence
between the two images are computed by a plane induced
Homography [3, Page 327] defined as,

H(dp,np) = K(R−
tnT

p

dp
)K−1, (9)

where R and t are the relative rotation and translation be-
tween two frames, and K is the camera intrinsic matrix.

4. System computation complexity
Table 1 lists the complexity and computation time for

each step in Algorithm 1 for the example statue. Please
note we exclude the time on DSO and InfiniTAM (depth
map fusion).

Here, we analyze the complexity of each step of the Al-
gorithm 1. (Step 1) The PatchMatch Stereo for rough sur-
face estimation has time complexity of O

(
nmp2

)
at each

iteration, where m is the number of pixels per video frame,
n is number of neighbors, and p is the patch size. (Step 2)
The disambiguation has time complexity of O

(
lm
)
, where

we trace a contour of l pixels for each of the m pixels for
disambiguation. (Step 3) The Depth Consistency Check has
time complexity of O

(
m
)
, where we project all the pixels to

another frame to check the consistency. (Step 4) We assign
the value of z to a, which has time complexity of O

(
m
)
.

The time spend on this step is negligible. (Step 5 and 6) We



estimate a depth distribution along the iso-depth contour at
each pixel, which has time complexity of O

(
lm
)
. (Step

7) We compute the KL divergence of the two depth distri-
butions on each pixel, which has time complexity O

(
m
)
.

(Step 8) The PatchMatch Stereo finds z that minimizes the
data term, which has time complexity of O

(
nmp2

)
. (Step

9) The RoF [4] method finds a that minimizes the smooth
term, which has time complexity of O

(
m
)
.

Steps Complexity Time (ms)

Step 1: PatchMatch (4 iterations) O
(
nmp2

)
275.29

Step 2: Disambiguation O
(
lm

)
116.23

Step 3: Depth Consistency Check O
(
m
)

0.67
init. total 393.82
Step 5 & 6: Trace Depth on Two Views
(1 iter)

O
(
lm

)
67.83

Step 7: Inlier Validation (1 iter) O
(
m
)

1.28
Step 8: Optimize Data Term (1 iter) O

(
nmp2

)
63.63

Step 9: Optimize Smooth Term (1 iter) O
(
m
)

6.60
iter. total (6 iterations) 828.39

Table 1: Complexity and Computation Time of each step
for the example statue. See the text for more details.

Our entire system is highly parallized. The DSO is run-
ning on CPU in realtime to provide a keyframe every 1-2
second. Our depth computation (Algorithm 1) runs on a Ti-
tan X GPU (with 3584 CUDA cores) for depth computation
of the keyframes. It takes about 1.2 second to process one
keyframe. Finally, the InfiniTAM runs on another Titan X
GPU to fuse the individual depth maps to a mesh model in
realtime.
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