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1. Synthetic perturbation generation
The algorithm below summarizes the procedure of gen-

erating the synthetic image-agnostic perturbations con-
strained by their `2-norm. The algorithm is analogous to
Algorithm (1) in Section 4.2 of the paper.

Algorithm 1 `2-norm synthetic perturbation generation
Input: Pre-generated perturbation samplesP ⊆ Rd, num-

ber of samples to be generated η, threshold ξ.
Output: Synthetic perturbations Ps ⊆ Rd

1: set Ps = {}; Pn = P with `2-normalized elements.
2: while |Ps| < η do
3: set ρs = 0
4: while ||ρs||2 < ξ do
5: z ∼ unif(0, 1)� (ξ − ||ρs||2)
6: ρs = ρs + (z � rand∼ Pn)
7: end while
8: Ps = Ps

⋃
ρs

9: end while
10: return

Whereas generating a single universal adversarial pertur-
bation [4] for a network, e.g. GoogLeNet [5] takes several
hours using the tensorflow implementations, the average
time to generate 230 synthetic image-agnostic perturbations
was recorded around 1 minute for the `2-type perturbations,
and nearly 10 minutes for the `∞-type perturbations. For
the latter, the computation takes longer because of the addi-
tional constraint over the `2-norm of the perturbations.

2. DCT for rectifying perturbations
Dziugaite et al. [2] studied JPG compression to mitigate

the fooling caused by image-specific perturbations, and sug-
gested analyzing Discrete Cosine Transform (DCT) to re-
duce the effectiveness of quasi-imperceptible perturbations.
We performed experiments to evaluate DCT compression as
a potential solution for defending the networks against the
universal adversarial perturbations. In Fig. 1, results of a
representative experiment are shown. In this experiment,
we perturbed all the available 10, 000 images with the 5

test perturbations (`2-type) for the GoogLeNet and tested
the accuracy of the network on these images by rectifying
them using the DCT. The plot in the figure clearly suggests
that the performance of a simple DCT-based rectification
is far from satisfactory as a defense against the universal
perturbations. In comparison to the network’s performance
on the clean images (i.e. 69.30%) the best result using the
DCT rectified images is significantly low (i.e. 47.91%). On
the other hand, the accuracy of the network on the PRN
rectified version of the same 10, 000 perturbed images is
65.97%. For visualization, we also show the rectification of
an example perturbed image with DCT and PRN in Fig. 2.

A ‘significant’ gain of PRN over DCT-based rectifica-
tion was consistently observed in our experiments with all
the targeted networks. Based on our experiments we can
safely conclude that whereas a simple DCT-based rectifica-
tion can mitigate the effects of the universal adversarial per-
turbations, it is insufficient to use DCT compression alone
as the defense against these perturbations - leaving alone the
question of how much compression is required for the most
effective rectification.

3. Cross-network results for Prot-B

Table 1. `2-type cross-network defense (Prot-B): Testing is done
using the perturbations generated on the networks in the left-most
column. The networks to generate the training perturbations are
indicated in the second row.

PRN-restoration (%)
VGG-F CaffeNet GoogLeNet

VGG-F [1] 86.2 87.0 70.4
CaffeNet [3] 85.5 89.9 65.7
GoogLeNet [5] 83.5 80.2 92.4

Defense rate (%)
VGG-F CaffeNet GoogLeNet

VGG-F [1] 91.6 89.8 75.0
CaffeNet [3] 91.4 93.6 72.6
GoogLeNet [5] 87.5 84.0 94.8

The Tables 1 and 2 report the results of our experiments
for the cross-network defense using the proposed frame-
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Figure 1. Performance of GoogLeNet on the perturbed images rectified by removing the 2D-DCT components of the images. The x-axis
shows the threshold of the magnitude below which the components were removed. The accuracy of the network on the same perturbed
images rectified by the proposed PRN (only) is 65.97%. The accuracy of GoogLeNet is 69.30% on the clean version of the same images.

Figure 2. Rectification with 2D-DCT vs PRN: In ‘DCT-X’, ‘X’ refers to the threshold magnitude below which the DCT components
were ignored in the image reconstruction. Whereas DCT compression is able to reduce the noise patterns in the images, it also results in
unnecessary blur which is detrimental to the network performance. The shown accuracies of GoogLeNet are for the complete test dataset.

Table 2. `∞-type cross-network defense summary (Prot-B).

PRN-restoration (%)
VGG-F CaffeNet GoogLeNet

VGG-F [1] 84.4 84.6 63.5
CaffeNet [3] 83.2 88.7 62.9
GoogLeNet [5] 83.5 77.4 91.3

Defense rate (%)
VGG-F CaffeNet GoogLeNet

VGG-F [1] 90.1 87.7 68.2
CaffeNet [3] 87.9 92.5 69.2
GoogLeNet [5] 86.8 81.4 93.7

work under the Protocol-B mentioned in Section 5 of the
paper. In contrast to Protocol-A, Protocol-B uses the testing
images created by perturbing only those images that were
necessarily correctly classified by the targeted network in
their clean form. For the results in the tables, both ‘de-
tector’ and ‘rectifier’ components of our framework were
trained using the perturbations generated for the same (tar-
geted) network.

4. Examples of rectified images

Representative examples are provided in figures 3 to 6.



Figure 3. Representative examples of the original, perturbed and rectified images: The images are provided for the `∞-type perturbations.

Figure 4. These examples are provided for the `2-type perturbations.



Figure 5. Further examples for the `∞-type perturbations.

Figure 6. Further examples for the `2-type perturbations.
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