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A. Training details of the competing methods
In this section, we give the details of training the com-

peting baselines. The validation sets are used to determine
all the free parameters.

• Fine-tuning [1]: For Faster-RCNN, we run the exper-
iments for 7,000 iterations in total. The base learning
rate is 1e-4 in the first 4,000 iterations and then re-
duced to 1e-5 for the remaining 3,000 iterations. For
CascadeCNN, we fine-tune the model with the learn-
ing rate of 1e-4 for 10,000 iterations and another 5,000
iterations with the learning rate of 1e-5.

• LWF [2]: For Faster-RCNN, we train the model for
8,000 iterations. The base learning rate is set to 1e-4
for the first 6,000 iterations and then reduced to 1e-
5 for the next 2000 iterations. For CascadeCNN, we
train the model for 15,000 iterations with the base
learning rate of 1e-4 and reduce it to 1e-5 at the
10,000th iteration. In both the experiments, the learn-
ing rate for the last layer is 10 times the base learning
rate of the other layers.

• GDSDA [3]: We train the Faster-RCNN, and Cas-
cadeCNN with a learning rate of 1e-4 for 8,000 iter-
ations, and 12,000 iterations respectively.

• HTL [4]: We train the CascadeCNN using the learn-
ing rate 1e-4 for 10,000 iterations and another 3,000
iterations using the learning rate 1e-5.

• Gradient Reversal [5]: We train the Faster-RCNN us-
ing the base learning rate of 1e-4 for 20,000 iterations
and then reduce it to 1e-5 for the next 10,000 iterations.
Since the training sets of the source domain and the
target domain are highly unbalanced, we alternatively
take one image from either set to train the Gradient
Reversal.

B. Continuous scores on FDDB
The FDDB dataset [6] defines both discrete and contin-

uous scores to evaluate the face detection results. We have
shown the ROC curves of the discrete scores of different
methods in the main text.

Figure 1 and Figure 2 show the ROC curves of the con-
tinuous scores on FDDB for the Faster-RCNN and Cas-
cadeCNN. The left panels exhibit the curves of the Faster-
RCNN and the right panels show the curves for the Cas-
cadeCNN. For CasacadeCNN, our approach outperforms
all the competing methods in all the settings. For Faster-
RCNN, our method can still boost the performance under
the supervised setting and under semi-supervised setting
when N = 5. More importantly, our approach does not
incur negative transfer, i.e., the results are either better than
or about the same as the source detectors.

It is actually worth pointing out that the annotations
are inconsistent between the FDDB dataset and the source
where the detectors are trained. As a result, the FDDB
under-evaluates the adaptation methods.

C. Results on COFW
In addition to the FDDB dataset used in the main text, we

additionally consider COFW [7] as the target domain here.
COFW provides 1,345 training faces and 507 testing faces
and includes heavy occlusion and large shape variations.

Figure 3 and Figure 4 show the ROC curves of both dis-
crete and continuous scores on COFW for both the Faster-
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RCNN and CascadeCNN face detectors under the super-
vised setting. We can draw the same observation as on
the FDDB dataset, that our method shows no negative
transfer as compared to other competing methods for both
the Faster-RCNN and CascadeCNN detectors. GDSDA is
an exception among the competing methods and leads to
no negative transfer for CascadeCNN (but not for Faster-
RCNN).

We also evaluate the catastrophic forgetting when the de-
tectors are adapted to COFW. Figure 5 shows the perfor-
mance on the validation set of the WIDER Face for Faster-
RCNN. Our approach maintains a good performance in the
source domain compared with the original source detector.

D. More qualitative results
We show more qualitative results in Figure 6 and Fig-

ure 7. Our method is able to discard some of the false pos-
itives from both the source detectors. We can also observe
that our method is able to detect the true positives that have
not been detected by the source detectors.
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Figure 1. Continuous score results on the FDDB under unsupervised, supervised, and semi-supervised settings (3 out of 6 folds of training
images annotated). (Left: Faster-RCNN, Right: CascadeCNN)
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Figure 2. Continuous score results under the semi-supervised settings with N = {1, 5} out of 6 folds training images annotated on the
FDDB dataset. (Left: Faster-RCNN, Right: CascadeCNN)
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Figure 3. ROC Curves on COFW using FasterRCNN (supervised adaptation).
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Figure 4. ROC Curves on COFW using CascadeCNN (supervised adaptation).

(a) Easy Set (b) Medium Set (c) Hard Set

Figure 5. Evaluation of catastrophic forgetting on source domain after supervised adaptation to target domain (COFW): detection results
on the validation set of WIDER FACE (Easy, Medium and Hard sets).



Figure 6. Qualitative results of adapting Faster-RCNN. The image on the left of each pair shows the detection results by the source model
and the right image shows our method in the supervised adaptation setting.





Figure 7. More qualitative results, from left to right are face detection results on FDDB dataset with a CascadeCNN (1), the same detector
but adapted by our method to the target domain (FDDB) with no data annotation (2), and with some data annotation (3).


