
The Perception-Distortion Tradeoff
Supplementary Material

Yochai Blau and Tomer Michaeli
Technion–Israel Institute of Technology, Haifa, Israel

{yochai@campus,tomer.m@ee}.technion.ac.il

In this supplemental, we first provide a proof for Theorem 1, the derivation of Example 1, and the derivation of the MMSE
and MAP estimators which appear in Sections 3.1 and 3.2. We then briefly discuss the real-vs.-fake study setting and its
relation to Bayesian hypothesis testing. In the following sections, we specify all training and architecture details for the
WGAN experiment which was presented in Section 5, and also include details regarding the super-resolution algorithms
comparison in Section 6. Finally, we include additional comparisons between super-resolution algorithms using two extra
no-reference methods, and perform a comparison on RGB images as well.

I. Proof of Theorem 1
The proof of Theorem 1 follows closely that of the rate-distortion theorem from information theory [1]. The value P (D)

is the minimal distance d(pX , pX̂) over a constraint set whose size increases with D. This implies that the function P (D) is
non-increasing in D. Now, to prove the convexity of P (D), we will show that

λP (D1) + (1− λ)P (D2) ≥ P (λD1 + (1− λ)D2), (S1)

for all λ ∈ [0, 1]. First, by definition, the left hand side of (S1) can be written as

λd(pX , pX̂1
) + (1− λ)d(pX , pX̂2

), (S2)

where X̂1 and X̂2 are the estimators defined by

pX̂1|Y = arg min
pX̂|Y

d(pX , pX̂) s.t. E
[
∆(X, X̂)

]
≤ D1, (S3)

pX̂2|Y = arg min
pX̂|Y

d(pX , pX̂) s.t. E
[
∆(X, X̂)

]
≤ D2. (S4)

Since d(·, ·) is convex in its second argument,

λd(pX , pX̂1
) + (1− λ)d(pX , pX̂2

) ≥ d(pX , pX̂λ), (S5)

where X̂λ is defined by
pX̂λ|Y = λpX̂1|Y + (1− λ) pX̂2|Y . (S6)

Denoting Dλ = E[∆(X, X̂λ)], we have that

d(pX , pX̂λ) ≥ min
pX̂|Y

{
d(pX , pX̂) : E[∆(X, X̂)] ≤ Dλ

}
= P (Dλ), (S7)

because X̂λ is in the constraint set. Below, we show that

Dλ ≤ λD1 + (1− λ)D2. (S8)
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Therefore, since P (D) is non-increasing in D, we have that

P (Dλ) ≥ P (λD1 + (1− λ)D2). (S9)

Combining (S2),(S5),(S7) and (S9) proves (S1), thus demonstrating that P (D) is convex.
To justify (S8), note that

Dλ = E
[
∆(X, X̂λ)

]
= E

[
E
[
∆(X, X̂λ)|Y

]]
= E

[
λE
[
∆(X, X̂1)|Y

]
+ (1− λ)E

[
∆(X, X̂2)|Y

]]
= λE

[
∆(X, X̂1)

]
+ (1− λ)E

[
∆(X, X̂2)

]
≤ λD1 + (1− λ)D2, (S10)

where the second and fourth transitions are according to the law of total expectation and the third transition is justified by

p(x, x̂λ|y) = p(x̂λ|x, y)p(x|y) = p(x̂λ|y)p(x|y) = (λp(x̂1|y) + (1− λ)p(x̂2|y))p(x|y)

= λp(x̂1|y)p(x|y) + (1− λ)p(x̂2|y))p(x|y) = λp(x, x̂1|y) + (1− λ)p(x, x̂2|y)). (S11)

Here we used (S6) and the fact that given Y , X is independent of X̂λ, X̂1, and X̂2.

II. Derivation of Example 1
Since X̂ = aY = a(X + N), it is a zero-mean Gaussian random variable. Now, the Kullback-Leibler distance between

two zero-mean normal distributions is given by

dKL(pX‖pX̂) = ln

(
σX̂
σX

)
+

σ2
X

2σ2
X̂

− 1

2
, (S12)

and the MSE between X and X̂ is given by

MSE(X, X̂) = E[(X − X̂)2] = σ2
X − 2σXX̂ + σ2

X̂
. (S13)

Substituting X̂ = aY and σ2
X = 1, we obtain that σX̂ = |a|

√
1 + σ2

N and σXX̂ = a, so that

dKL(a) = ln

(
|a|
√

1 + σ2
N

)
+

1

2a2(1 + σ2
N )
− 1

2
, (S14)

MSE(a) = 1 + a2(1 + σ2
N )− 2a, (S15)

and
P (D) = min

a
dKL(a) s.t. MSE(a) ≤ D. (S16)

Notice that dKL is symmetric, and MSE(|a|) ≤ MSE(a) (see Fig. S1). Thus, for any negative a, there always exists a positive
a with which dKL is the same and the MSE is not larger. Therefore, without loss of generality, we focus on the range a ≥ 0.

For D < Dmin =
σ2
N

1+σ2
N

the constraint set of MSE(a) < D is empty, and there is no solution to (S16). For D ≥ Dmin,
the constraint is satisfied for a− ≤ a ≤ a+, where

a±(D) =
1

(1 + σ2
N )

(
1±

√
D(1 + σ2

N )− σ2
N

)
. (S17)

For D = Dmin, the optimal (and only possible) a is

a = a+(Dmin) = a−(Dmin) =
1

(1 + σ2
N )
. (S18)
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Figure S1. Plots of (S14) and (S15). D defines the range (a−, a+) of a values complying with the MSE constraint (marked in red). The
objective dKL is minimized over this range of possible a values.

For D > Dmin, a+ monotonically increases with D, broadening the constraint set. The objective dKL(a) monotonically
decreases with a in the range a ∈ (0, 1/

√
(1 + σ2

N )) (see Fig. S1 and the mathematical justification below). Thus, for
Dmin < D ≤ D0, the optimal a is always the largest possible a, which is a = a+(D), where D0 is defined by a+(D0) =
1/
√

(1 + σ2
N ) (see Fig. S1). For D > D0, the optimal a is a = 1/

√
(1 + σ2

N ), which achieves the global minimum
dKL(a) = 0. The closed form solution is therefore given by

P (D) =

{
dKL(a+(D)) Dmin ≤ D < D0

0 D0 ≤ D
(S19)

To justify the monotonicity of dKL(a) in the range a ∈ (0, 1/
√

(1 + σ2
N )), notice that for a > 0,

d

da
dKL(a) =

1

a
− 1

(1 + σ2
N )

1

a3
, (S20)

which is negative for a ∈ (0, 1/
√

(1 + σ2
N )).

III. Derivation of MMSE and MAP estimators (Sec. 3.1,3.2)
In these sections, X which is a 280 × 280 binary image is denoised from its noisy counterpart Y = X + N , where

N ∼ N (0, σ2I) is independent from X . Thus, the conditional distribution of Y given X is p(y|X = x) ∼ N (x, σ2I). The
MMSE estimator is given by posterior-mean

x̂MMSE(y) = E[X|Y = y] =
∑
x

xp(x|y) =
∑
x

x
p(y|x)p(x)∑
x′ p(y|x′)p(x′)

=
∑
x

x
exp(− 1

2σ2 ‖y − x‖2)p(x)∑
x′ exp(− 1

2σ2 ‖y − x′‖2)p(x′)
, (S21)

where p(x) = 1/59400 for non-blank images and p(x) = 1/11 for the blank image. The MAP estimator is given by

x̂MAP(y) = arg maxx p(x|y) = arg minx− log(p(y|x)p(x)) = arg minx
1

2σ2
‖y − x‖2 − log(p(x)). (S22)

Notice that since the noise N is i.i.d., subparts of y can be denoised separately. Specifically, denoising the whole 280× 280
image is equivalent to denoising each sub-image containing one MNIST digit separately.

The MMSE and MAP estimators for the simple example of the discrete distribution in (4), are reported in Sec. 3.1,3.2.
We calculate the distribution of the MMSE estimator in this simple example (Fig. 3) by

pX̂MMSE
(x̂) = pY (x̂−1MMSE(x̂))

∣∣∣∣ ddx̂ x̂−1MMSE(x̂)

∣∣∣∣ (S23)

where the inverse of the MMSE estimator x̂MMSE(y) (see (5)) and its derivative are calculated numerically, and pY (y) =∑
x p(y|x)p(x) with p(y|x) ∼ N (x, 1) and p(x) is given by (4).
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Table S1. Generator and discriminator architecture. FC is a fully-connected layer, BN is a batch-norm layer, and l-ReLU is a leaky-ReLU
layer.

Discriminator
Size Layer

28× 28× 1 Input
12× 12× 32 Conv (stride=2), l-ReLU (slope=0.2)
4× 4× 64 Conv (stride=2), l-ReLU (slope=0.2)

1024 Flatten
1 FC
1 Output

Generator
Size Layer

28× 28× 1 Input
784 Flatten

4× 4× 128 FC, unflatten, BN, ReLU
7× 7× 64 transposed-Conv (stride=2), BN, ReLU

14× 14× 32 transposed-Conv (stride=2), BN, ReLU
28× 28× 1 transposed-Conv (stride=2), sigmoid
28× 28× 1 Output

IV. Real-vs.-fake study setting
We assume the setting where an observer is shown a real image (realization of pX ) or an algorithm output (realization of

pX̂ ), with a prior probability of 0.5 each. The task is to identify which distribution the image was drawn from (pX or pX̂ ) with
a maximal success rate. This is the setting of the Bayesian hypothesis testing problem, for which the maximum a-posteriori
(MAP) decision rule minimizes the probability of error (see Section 1 in [7]). When there are two possible hypotheses with
equal priors (as is our setting), the relation between the probability of error and the total-variation distance between pX and
pX̂ in (1) can be easily derived (see Section 2 in [7]).

V. WGAN architecture and training details (Sec. 5)
The architecture of the WGAN trained for denoising the MNIST images is detailed in Table S1. The training algorithm

and adversarial losses are as proposed in [2]. The generator loss was modified to include a content loss term, i.e. `gen =
`MSE + λ `adv, where `MSE is the standard MSE loss. For each λ the WGAN was trained for 35 epochs, with a batch
size of 64 images. The ADAM optimizer [3] was used, with β1 = 0.5, β2 = 0.9. The generator/discriminator initial
learning rate is 10−3/10−4 respectively, where learning rate of both decreases by half every 10 epochs. The filter size of
the discriminator convolutional layers is 5 × 5, and these are performed without padding. The filter size in the generator
transposed-convolutional layers is 5× 5/4× 4, and these are performed with 2/1 pixel padding for the first/second and third
transposed-convolutional layers, respectively. The stride of each convolutional layer and the slope for the leaky-ReLU layers
appear in Table S1. Note that the perception-distortion curve in Fig. 6 is generated by training on single digit images, which
in general may deviate from the perception-distortion curve of whole images containing i.i.d. sub-blocks of digits.

VI. Super-resolution evaluation details and additional comparisons (Sec. 6)
The no-reference (NR) and full-reference (FR) methods BRISQUE, BLIINDS-II, NIQE, SSIM, MS-SSIM, IFC and VIF

were obtained from the LIVE laboratory website1, the NR method of Ma et al. was obtained from the project webpage2, and
the pretrained VGG-19 network was obtained through the PyTorch torchvision package3. The low-resolution images were
obtained by factor 4 downsampling with a bicubic kernel. The super-resolution results on the BSD100 dataset of the SRGAN
and SRResNet variants were obtained online4, and the results of EDSR, Deng, Johnson et al. and Mechrez et al. were kindly
provided by the authors. The algorithms for testing the other SR methods were obtained online: A+5, SRCNN6, SelfEx7,
VDSR8, LapSRN9, Bae et al.10 and ENet11. All NR and FR metrics and all SR algorithms were used with the default

1http://live.ece.utexas.edu/research/Quality/index.htm
2https://github.com/chaoma99/sr-metric
3http://pytorch.org/docs/master/torchvision/index.html
4https://twitter.box.com/s/lcue6vlrd01ljkdtdkhmfvk7vtjhetog
5http://www.vision.ee.ethz.ch/˜timofter/ACCV2014_ID820_SUPPLEMENTARY/
6http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html
7https://github.com/jbhuang0604/SelfExSR
8http://cv.snu.ac.kr/research/VDSR/
9https://github.com/phoenix104104/LapSRN

10https://github.com/iorism/CNN
11https://webdav.tue.mpg.de/pixel/enhancenet/
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Figure S2. Plot of 15 algorithms on the perception-distortion plane, where perception is measured by the NR metric NIQE, and distortion
is measured by the common full-reference metrics RMSE, SSIM, MS-SSIM, IFC, VIF and VGG2,2. All metrics were calculated on the
y-channel alone.

parameters and models. In the paper, we reported comparisons on the y-channel (except for the VGG2,2 measure). Below,
we report results with additional NR metrics on the y-channel, as well as results on color images. When comparing color
images, for SR algorithms which treat the y-channel alone, the Cb and Cr channels are upsampled by bicubic interpolation.

The general pattern appearing in Fig. 8 will appear for any NR method which accurately predicts the perceptual quality of
images. We show here three additional popular NR methods NIQE [6], BRISQUE [5], and BLIINDS-II [8] in Figs. S2,S3,S4,
where the same conclusions as for Ma et al. [4] (see Sec. 6) are apparent. The same pattern appears for RGB images as well,
as shown in Figs. S5,S6. Note that the perceptual quality of Johnson et al. and SRResNet-VGG2,2 is inconsistent between
NR metrics, likely due to varying sensitivity to the cross-hatch pattern artifacts which are present in these method’s outputs.
For this reason, Johnson et al. does not appear in the NIQE plots, as its NIQE score is 13.55 (far off the plots).
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Figure S3. Plot of 16 algorithms on the perception-distortion plane, where perception is measured by the NR metric BRISQUE, and
distortion is measured by the common full-reference metrics RMSE, SSIM, MS-SSIM, IFC, VIF and VGG2,2. All metrics were calculated
on the y-channel alone.
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Figure S4. Plot of 16 algorithms on the perception-distortion plane, where perception is measured by the NR metric BLIINDS-II, and
distortion is measured by the common full-reference metrics RMSE, SSIM, MS-SSIM, IFC, VIF and VGG2,2. All metrics were calculated
on the y-channel alone.
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Figure S5. Plot of 16 algorithms on the perception-distortion plane. Perception is measured by the the NR metrics of Ma et al. and NIQE,
and distortion is measured by the common full-reference metrics RMSE, SSIM and MS-SSIM. All metrics were calculated on three
channel RGB images.
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Figure S6. Plot of 16 algorithms on the perception-distortion plane. Perception is measured by the the NR metrics BRISQUE and BLIINDS-
II, and distortion is measured by the common full-reference metrics RMSE, SSIM and MS-SSIM. All metrics were calculated on three
channel RGB images.
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