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More results and further analysis of the proposed method are presented here.

1. Robustness to ensemble black box attacks

To evaluate the robustness of our method to powerful ensemble black box attack, we gather 5 models
(Vggl6[3], Resnet-v1-152[ 1], IncV2[5], IncV4, ensIncResV2[6], and use FGSM and IFGSMS to gen-
erate adversarial examples by attacking them. Then we test LGD and ensV3 on this new dataset, the
result is shown in Table S1. It turns out that LGD still outperforms ensV3 by a large margin.

Table S1. The accuracy of different methods against blackbox ensemeble attack.
Defense FGSM,e4 FGSM,el6 IFGSMS8,e4 IFGSMS,el16

NA 54.5% 33.6% 53.0% 22.8%
ensV3 66.7% 50.2% 67.6% 59.3%
LGD 72.8% 70.5% 69.2% 59.4%

2. Combination of HGD and adversarially trained model

As two different approaches, denoising networks and adversarial training may have complementary
effects, use a HGD to process the distorted images before they are inputted to an adversarially trained
model may further improve the performance. To test this idea, we train an LGD with ensemble ad-
versarially trained Inception V3 (ensV3) [6] as the target model. For fair comparison, we replace the
attack methods targeting at IncV3 (and other models) with attack methods targeting at ensV3 (and other
models) and make a new dataset correspondingly. The LGD+ensV3 model is trained and tested on this

new dataset.

*Equal contribution.
fCorresponding author.



Table S2. The influence of adding a LGD before ensV3. For fair comparison, the white-box attacks (WhiteTestSet)
used in the two blocks are targeting at IncV3 and ensV3 respectively.

WhiteTestSet BlackTestSet
e=4 e=16 e=4 €e=16

Defense Clean

IncV3 76.7% 145% 144% 61.2% 41.0%
LGD +IncV3 762% 752% 692% 751% 72.2%
ensV3 76.9% T71.4% 61.7% T724% 62.0%
LGD +ensV3 76.9% 75.0% 72.5% 74.7% 72.1%

Because ensV3 is more robust than IncV3, we expect to see higher robustness in LGD+ensV3. How-
ever, the results show that although LGD helps the ensv3 to improve the robustness, their combination
is not significantly better than the LGD+IncV3 (Table S2) (The results of LGD+IncV3 are copied from

Table 3.).

3. Ensembles of HGD protected models

Ensemble is an effective method to boost the performance of classifiers. We explore the ensemble of
several HGDs and target models. Specifically, we train two LGDs. The first one is denoted by LGD]1,
which is trained with IncV3 as the target model and the second one is denoted by LGD2, which is trained
with ensV3 as the target model'. Different combinations of the two denoisers and various target models

are tested:

e IncV3&ensV3. The adversarial images (z*) are fed directly to the two models without protection,
and the output logits of IncV3 and ensV3 are averaged as the result. The symbol & indicate an

ensemble.

Motivation: This method serves as the baseline ensemble.

e LGD1— IncV3&ensV3. z* is firstly fed to the LGD1, resulting in a denoised image #, which is
then fed to the ensemble of IncV3&ensV3. The — indicates the flow of data.

Motivation: LGD shows certain transferability across different models (Section 5.3 in main paper).
So it is possible to use an LGD to protect multiple models.

e (LGD1—IncV3&ensV3)&(LGD2—IncV3&ensV3). LGD1 and LGD2 give two denoised im-
ages 21 and 25, which are then fed to IncV3&ensV3 independently. The four output logits are
averaged as the result.

Motivation: This method is similar with the last one, but make use of LGD?2.
e LGD1&LGD2—IncV3&ensV3. The output of LGD1 and LGD?2 are averaged (& = (Z1+22)/2).
The averaged denoised image is then fed to IncV3&ensV3.

Motivation: Each LGD give an independent estimation of the adversarial perturbation, so averag-
ing the outputs of two LGD may result in a better estimation of perturbation.

IDifferent from Section 2, the LGD2 used in this section is trained and evaluated on the default dataset.



Table S3. The classification accuracy on the test set obtained by different methods.
WhiteTestSet BlackTestSet

Defense Clean c—4 (=16 c—4 c— 16

LGDI1—IncV3 76.2% T752% 692% 75.1% 72.2%

LGD2—ensV3 76.9% 74.4% T1.8% 752% 73.8%

IncV3&ensV3 788% 35.6% 30.0% 702% 56.6%
LGD1—IncV3&ensV3 77.6% 75.6% T713% 75.5% 72.7%
(LGD1—IncV3&ensV3)&(LGD2—IncV3&ensV3) 785% 699% 67.8% T77.0% T74.7%
LGD1&LGD2—IncV3&ensV3 782% 70.6% 67.6% 76.5% 74.5%
(LGD1—IncV3)&(LGD2—ensV3) 78.6% T77.4% 734% 77.7% 75.7%

Table S4. The classification accuracy on test sets obtained by different defenses. NA means no defense.
Defense  Clean WhiteTestSet BlackTestSet
e=4 €=16 e=4 €e€=16
NA 76.7% 145% 144% 612% 41.0%
PGD 753% 20.0% 13.8% 67.5% 55.7%
PGDx2 73.7% 40.7% 50.8% 709% 67.4%

LGD 762% 752% 692% 751% 72.2%

o (LGD1—-IncV3)&(LGD2—ensV3). z; and 2, are fed to IncV3 and ensV3 respectively. The
logits of the two models are averaged as result.

Motivation: The most straightforward way of ensemble.

Except for these ensembles, two single model baselines LGD1—IncV3 and LGD2—ensV3 are also
tested.

The results of these methods are shown in Table S3. (LGD1—IncV3)&(LGD2—ensV3) performs the
best and shows consistent improvement comparing to baselines. Other ensemble methods achieve little
improvements comparing with the single models. Some of them even have degraded performance.

4. Remedy for the low slope of PGD

In Section 5.4 of the paper, we show the different denoising properties of PGD and LGD (dz = kdz*),
and it may be inferred that the low k value of PGD is an important factor for PGD’s poor performance.
To validate this assumption, we replace the output of PGD with & = x* — 2dz (i.e. replace —dz in Fig.
2 by —2dz), so that its k is close to 1. The results (denoted by PGD x2 in Table S4) are significantly
higher than those of the original PGD but still not as high as those of LGD. Besides, this change also
significantly decreases the accuracy on clean images. Therefore the low £ value of PGD is indeed a
reason for its poor robustness, but it cannot explain all difference between PGD and LGD.

5. The details of NIPS 2017 solution

In this section, we list the attacks we used to generate the training and validation sets for training the
denoiser. € is the L., constraint of the adversarial perturbation. In our experiment, € = 16 is fixed.

e No operation. The clean images are directly adopted.



e Images withs random noise. Each pixel of an original image is randomly perturbed with € or —e
with equal probability.

e FGSM x IncV3. The word before “x” indicates the attacking method, and the word after it
indicates the target model. FGSM meas fast gradient sign method (defined in the main paper).

e FGSM x ensV3&advV3. advV3 is an adversarially trained Inception V3 model [2].

e FGSM x IncV3&IncV4&ensIncResV2. IncV4 is Inception V4 [4]. EnsIncResV2 is an ensemble
adversarially trained InceptionResnet V2 [4, 6].

e IFGSM2 x 7 models. IFGSM* means k step iterative FGSM. The step size of each step is ¢/k.
7 models means the ensemble of IncV3, advV3, ensV3, ensdV3[6], IncV4, IncResV2 and ensln-
cResV2. ens4V3 is another ensemble adversarially trained Inception V3 [6]. IncResV2 is the
InceptionResnet V2 [4].

e IFGSM* x 7 models.
o IFGSM?® x 7 models.

e IFGSM? x 8 models. 8 models means the ensemble of the 7 models mentioned above and
Resnet101[1].

o IFGSM?® x 8 models.

e dIFGSM* x 8 models. dIFGSM means IFGSM with decayed step size, which is set as 0.4¢, 0.3¢,
0.2¢, 0.1¢ for AIFGSM*.

e adalFGSM® x 8 models. adalFGSM means adaptive IFGSM. In adalFGSM, there is a list of
IFGSM attacks with increasing power and running time (i.e. more iterations). An original image
is firstly perturbed by the simplest attack. If this adversarial image successfully fools all the target
models, it is used as output and the procedure ends, else the original image would be perturbed
by the attack in the next level. This procedure continues until the adversarial image fools all the
target models or the last attack in the list is used.

In adaIFGSM?, the attack list is (dAIFGSM* x 8 models, IFGSM?" x 8 models).

e adalFGSM? x 8 models. In adaIFGSM?, the attack list is (dAIFGSM? x 8 models, dIFGSM* x 8
models, IFGSM? x 8 models). The step size is set as 3¢, z¢, #¢ for dIFGSM?.

e adalFGSM?3 x 8 models. In adal[FGSM?3, the attack list is (FGSM x 8 models, IFGSM? x 8
models, IFGSM* x 8 models, IFGSM?® x 8 modelS, IFGSM?° x 8 models).

These attacks are applied to 15,000 original images, resulting in a training set of 210,000 adversarial
images. And they are applied to other 5,000 original images, resulting in a validation set of 70,000
adversarial images.



6. Detailed performance on the test set

Here we provide the detail version of tables in the main text, where the performance of each defense
against each attack is shown. The name of attacks is abbreviated in the following way:

e F: FGSM,

14: IFGSM*4,
v3: IncV3,

v4: IncV4,

o c4: e =4,

e ¢l6: ¢ = 16.

ens: ensemble of IncV3, Resnetv2, IncResnetv2.

For example, F_v3_e4 denotes the attack FGSM x IncV3, € = 4. From these results we can conclude that
HGD is better than PGD and ensV3 consistently, no matter the attack is black-box or white-box, FGSM

or IFGSM.

Table S5. The details of Table 2.
Defense Clean F.v3e4 I4.ensed F.v3el6o Idensel6 Fvded I4.vded Fvdelo I14.vdel6
Naive 0.0000  0.0209 0.0146 0.0613 0.0260  0.0209 0.0143 0.0613 0.0289
DAE 0.0360 0.0358 0.0360 0.0367 0.0354  0.0359 0.0361 0.0372 0.0367
DUNET 0.0157 0.0183 0.0170 0.0205 0.0219 0.0184 0.0169 0.0216 0.0237
DAUNET 0.0150 0.0142 0.0138 0.0159 0.0168 0.0143 0.0136 0.0162 0.0201
Naive 76.7% 21.6% 7.4% 23.9% 4.8% 60.3% 62.1% 47.4% 34.7%
DAE 58.3% 51.0% 51.8% 37.6% 35.8% 55.5% 56.3% 46.8% 50.8%
DUNET 76.2% 23.2% 8.9% 24.5% 5.7% 63.2% 65.7% 58.9% 50.5%
DAUNET 75.3% 31.0% 8.9% 21.8% 5.9% 68.3% 66.7% 60.0% 51.4%

Table S6. The details of Table 3.
Defense Clean F.v3e4 I4ensed4d F.v3el6 Idensel6 F.vded I4vded Fvdelo 14.vdel6
Naive 76.7% 21.6% 7.4% 23.9% 4.8% 60.3% 62.1% 47.4% 34.7%
PGD 75.3% 31.0% 8.9% 21.8% 5.9% 68.3% 66.7% 60.0% 51.4%
ensV3 76.9% 71.7% 68.0% 58.3% 57.7% 71.5% 73.4% 57.3% 66.6%
FGD 76.1% 75.2% 72.2% 71.6% 63.2% 74.4% 74.3% 73.9% 69.8%
LGD 76.2% 76.0% 74.5% T4.2% 64.1% 75.2% 74.9% 74.0% 70.4%
CGD 74.9% 76.2% 75.5% 75.8% 70.5% 74.8% 74.2% 73.0% 69.2%




Table S7. The details of Table 4.

Delr;‘:;;’;for Clean Fv3e4 I4ensed Fv3el6 Idensel6 Fvded l4vded Fvdelo I4vdel6

NA 785%  68.5%  582%  51.4% 253%  662%  69.4%  50.3%  46.9%
Incvscfgded 774%  761%  75.0%  76.2% 67.1%  764%  758%  75.1% 70.3%
RCS“LetGgI;“ded 784%  71.8%  745%  71.7% 68.1%  767%  162%  772%  12.0%

Table S8. The details of Table 5.
Defense Clean F.v3.e4 I4.ens.ed F_v3el6 Idensel6 F.vded4d I4vded F.vdel6 14.v4_el6

NA 76.6%  22.8% 8.0% 25.5% 50% 60.7%  62.4% 48.2% 35.1%
LGD 76.3%  74.8% 73.0% 68.4% 63.0% 749%  74.7% 74.7% 69.7%
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