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More results and further analysis of the proposed method are presented here.

1. Robustness to ensemble black box attacks
To evaluate the robustness of our method to powerful ensemble black box attack, we gather 5 models

(Vgg16[3], Resnet-v1-152[1], IncV2[5], IncV4, ensIncResV2[6], and use FGSM and IFGSM8 to gen-
erate adversarial examples by attacking them. Then we test LGD and ensV3 on this new dataset, the
result is shown in Table S1. It turns out that LGD still outperforms ensV3 by a large margin.

Table S1. The accuracy of different methods against blackbox ensemeble attack.

Defense FGSM,ε4 FGSM,ε16 IFGSM8,ε4 IFGSM8,ε16

NA 54.5% 33.6% 53.0% 22.8%
ensV3 66.7% 50.2% 67.6% 59.3%
LGD 72.8% 70.5% 69.2% 59.4%

2. Combination of HGD and adversarially trained model
As two different approaches, denoising networks and adversarial training may have complementary

effects, use a HGD to process the distorted images before they are inputted to an adversarially trained
model may further improve the performance. To test this idea, we train an LGD with ensemble ad-
versarially trained Inception V3 (ensV3) [6] as the target model. For fair comparison, we replace the
attack methods targeting at IncV3 (and other models) with attack methods targeting at ensV3 (and other
models) and make a new dataset correspondingly. The LGD+ensV3 model is trained and tested on this
new dataset.
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Table S2. The influence of adding a LGD before ensV3. For fair comparison, the white-box attacks (WhiteTestSet)
used in the two blocks are targeting at IncV3 and ensV3 respectively.

Defense Clean
WhiteTestSet BlackTestSet

ε = 4 ε = 16 ε = 4 ε = 16

IncV3 76.7% 14.5% 14.4% 61.2% 41.0%
LGD + IncV3 76.2% 75.2% 69.2% 75.1% 72.2%

ensV3 76.9% 71.4% 61.7% 72.4% 62.0%
LGD + ensV3 76.9% 75.0% 72.5% 74.7% 72.1%

Because ensV3 is more robust than IncV3, we expect to see higher robustness in LGD+ensV3. How-
ever, the results show that although LGD helps the ensv3 to improve the robustness, their combination
is not significantly better than the LGD+IncV3 (Table S2) (The results of LGD+IncV3 are copied from
Table 3.).

3. Ensembles of HGD protected models
Ensemble is an effective method to boost the performance of classifiers. We explore the ensemble of

several HGDs and target models. Specifically, we train two LGDs. The first one is denoted by LGD1,
which is trained with IncV3 as the target model and the second one is denoted by LGD2, which is trained
with ensV3 as the target model1. Different combinations of the two denoisers and various target models
are tested:

• IncV3&ensV3. The adversarial images (x∗) are fed directly to the two models without protection,
and the output logits of IncV3 and ensV3 are averaged as the result. The symbol & indicate an
ensemble.

Motivation: This method serves as the baseline ensemble.

• LGD1→ IncV3&ensV3. x∗ is firstly fed to the LGD1, resulting in a denoised image x̂, which is
then fed to the ensemble of IncV3&ensV3. The→ indicates the flow of data.

Motivation: LGD shows certain transferability across different models (Section 5.3 in main paper).
So it is possible to use an LGD to protect multiple models.

• (LGD1→IncV3&ensV3)&(LGD2→IncV3&ensV3). LGD1 and LGD2 give two denoised im-
ages x̂1 and x̂2, which are then fed to IncV3&ensV3 independently. The four output logits are
averaged as the result.

Motivation: This method is similar with the last one, but make use of LGD2.

• LGD1&LGD2→IncV3&ensV3. The output of LGD1 and LGD2 are averaged (x̂ = (x̂1+x̂2)/2).
The averaged denoised image is then fed to IncV3&ensV3.

Motivation: Each LGD give an independent estimation of the adversarial perturbation, so averag-
ing the outputs of two LGD may result in a better estimation of perturbation.

1Different from Section 2, the LGD2 used in this section is trained and evaluated on the default dataset.



Table S3. The classification accuracy on the test set obtained by different methods.

Defense Clean
WhiteTestSet BlackTestSet

ε = 4 ε = 16 ε = 4 ε = 16

LGD1→IncV3 76.2% 75.2% 69.2% 75.1% 72.2%
LGD2→ensV3 76.9% 74.4% 71.8% 75.2% 73.8%
IncV3&ensV3 78.8% 35.6% 30.0% 70.2% 56.6%

LGD1→IncV3&ensV3 77.6% 75.6% 71.3% 75.5% 72.7%
(LGD1→IncV3&ensV3)&(LGD2→IncV3&ensV3) 78.5% 69.9% 67.8% 77.0% 74.7%

LGD1&LGD2→IncV3&ensV3 78.2% 70.6% 67.6% 76.5% 74.5%
(LGD1→IncV3)&(LGD2→ensV3) 78.6% 77.4% 73.4% 77.7% 75.7%

Table S4. The classification accuracy on test sets obtained by different defenses. NA means no defense.

Defense Clean
WhiteTestSet BlackTestSet
ε = 4 ε = 16 ε = 4 ε = 16

NA 76.7% 14.5% 14.4% 61.2% 41.0%
PGD 75.3% 20.0% 13.8% 67.5% 55.7%

PGD x2 73.7% 40.7% 50.8% 70.9% 67.4%
LGD 76.2% 75.2% 69.2% 75.1% 72.2%

• (LGD1→IncV3)&(LGD2→ensV3). x̂1 and x̂2 are fed to IncV3 and ensV3 respectively. The
logits of the two models are averaged as result.

Motivation: The most straightforward way of ensemble.

Except for these ensembles, two single model baselines LGD1→IncV3 and LGD2→ensV3 are also
tested.

The results of these methods are shown in Table S3. (LGD1→IncV3)&(LGD2→ensV3) performs the
best and shows consistent improvement comparing to baselines. Other ensemble methods achieve little
improvements comparing with the single models. Some of them even have degraded performance.

4. Remedy for the low slope of PGD
In Section 5.4 of the paper, we show the different denoising properties of PGD and LGD (dx̂ = kdx∗),

and it may be inferred that the low k value of PGD is an important factor for PGD’s poor performance.
To validate this assumption, we replace the output of PGD with x̂ = x∗ − 2dx̂ (i.e. replace −dx̂ in Fig.
2 by −2dx̂), so that its k is close to 1. The results (denoted by PGD x2 in Table S4) are significantly
higher than those of the original PGD but still not as high as those of LGD. Besides, this change also
significantly decreases the accuracy on clean images. Therefore the low k value of PGD is indeed a
reason for its poor robustness, but it cannot explain all difference between PGD and LGD.

5. The details of NIPS 2017 solution
In this section, we list the attacks we used to generate the training and validation sets for training the

denoiser. ε is the L∞ constraint of the adversarial perturbation. In our experiment, ε = 16 is fixed.

• No operation. The clean images are directly adopted.



• Images withs random noise. Each pixel of an original image is randomly perturbed with ε or −ε
with equal probability.

• FGSM x IncV3. The word before “x” indicates the attacking method, and the word after it
indicates the target model. FGSM meas fast gradient sign method (defined in the main paper).

• FGSM x ensV3&advV3. advV3 is an adversarially trained Inception V3 model [2].

• FGSM x IncV3&IncV4&ensIncResV2. IncV4 is Inception V4 [4]. EnsIncResV2 is an ensemble
adversarially trained InceptionResnet V2 [4, 6].

• IFGSM2 x 7 models. IFGSMk means k step iterative FGSM. The step size of each step is ε/k.
7 models means the ensemble of IncV3, advV3, ensV3, ens4V3[6], IncV4, IncResV2 and ensIn-
cResV2. ens4V3 is another ensemble adversarially trained Inception V3 [6]. IncResV2 is the
InceptionResnet V2 [4].

• IFGSM4 x 7 models.

• IFGSM8 x 7 models.

• IFGSM2 x 8 models. 8 models means the ensemble of the 7 models mentioned above and
Resnet101[1].

• IFGSM8 x 8 models.

• dIFGSM4 x 8 models. dIFGSM means IFGSM with decayed step size, which is set as 0.4ε, 0.3ε,
0.2ε, 0.1ε for dIFGSM4.

• adaIFGSM1 x 8 models. adaIFGSM means adaptive IFGSM. In adaIFGSM, there is a list of
IFGSM attacks with increasing power and running time (i.e. more iterations). An original image
is firstly perturbed by the simplest attack. If this adversarial image successfully fools all the target
models, it is used as output and the procedure ends, else the original image would be perturbed
by the attack in the next level. This procedure continues until the adversarial image fools all the
target models or the last attack in the list is used.

In adaIFGSM1, the attack list is (dIFGSM4 x 8 models, IFGSM20 x 8 models).

• adaIFGSM2 x 8 models. In adaIFGSM2, the attack list is (dIFGSM3 x 8 models, dIFGSM4 x 8
models, IFGSM20 x 8 models). The step size is set as 1

2
ε, 1

3
ε, 1

6
ε for dIFGSM3.

• adaIFGSM3 x 8 models. In adaIFGSM3, the attack list is (FGSM x 8 models, IFGSM2 x 8
models, IFGSM4 x 8 models, IFGSM8 x 8 modelS, IFGSM20 x 8 models).

These attacks are applied to 15,000 original images, resulting in a training set of 210,000 adversarial
images. And they are applied to other 5,000 original images, resulting in a validation set of 70,000
adversarial images.



6. Detailed performance on the test set
Here we provide the detail version of tables in the main text, where the performance of each defense

against each attack is shown. The name of attacks is abbreviated in the following way:

• F: FGSM,

• I4: IFGSM4,

• v3: IncV3,

• v4: IncV4,

• ens: ensemble of IncV3, Resnetv2, IncResnetv2.

• e4: ε = 4,

• e16: ε = 16.

For example, F v3 e4 denotes the attack FGSM x IncV3, ε = 4. From these results we can conclude that
HGD is better than PGD and ensV3 consistently, no matter the attack is black-box or white-box, FGSM
or IFGSM.

Table S5. The details of Table 2.
Defense Clean F v3 e4 I4 ens e4 F v3 e16 I4 ens e16 F v4 e4 I4 v4 e4 F v4 e16 I4 v4 e16

Naive 0.0000 0.0209 0.0146 0.0613 0.0260 0.0209 0.0143 0.0613 0.0289
DAE 0.0360 0.0358 0.0360 0.0367 0.0354 0.0359 0.0361 0.0372 0.0367
DUNET 0.0157 0.0183 0.0170 0.0205 0.0219 0.0184 0.0169 0.0216 0.0237
DAUNET 0.0150 0.0142 0.0138 0.0159 0.0168 0.0143 0.0136 0.0162 0.0201

Naive 76.7% 21.6% 7.4% 23.9% 4.8% 60.3% 62.1% 47.4% 34.7%
DAE 58.3% 51.0% 51.8% 37.6% 35.8% 55.5% 56.3% 46.8% 50.8%
DUNET 76.2% 23.2% 8.9% 24.5% 5.7% 63.2% 65.7% 58.9% 50.5%
DAUNET 75.3% 31.0% 8.9% 21.8% 5.9% 68.3% 66.7% 60.0% 51.4%

Table S6. The details of Table 3.
Defense Clean F v3 e4 I4 ens e4 F v3 e16 I4 ens e16 F v4 e4 I4 v4 e4 F v4 e16 I4 v4 e16

Naive 76.7% 21.6% 7.4% 23.9% 4.8% 60.3% 62.1% 47.4% 34.7%
PGD 75.3% 31.0% 8.9% 21.8% 5.9% 68.3% 66.7% 60.0% 51.4%
ensV3 76.9% 71.7% 68.0% 58.3% 57.7% 71.5% 73.4% 57.3% 66.6%

FGD 76.1% 75.2% 72.2% 71.6% 63.2% 74.4% 74.3% 73.9% 69.8%
LGD 76.2% 76.0% 74.5% 74.2% 64.1% 75.2% 74.9% 74.0% 70.4%
CGD 74.9% 76.2% 75.5% 75.8% 70.5% 74.8% 74.2% 73.0% 69.2%



Table S7. The details of Table 4.
Denoiser for

Resnet
Clean F v3 e4 I4 ens e4 F v3 e16 I4 ens e16 F v4 e4 I4 v4 e4 F v4 e16 I4 v4 e16

NA 78.5% 68.5% 58.2% 51.4% 25.3% 66.2% 69.4% 50.3% 46.9%
IncV3 guided

LGD
77.4% 76.7% 75.0% 76.2% 67.1% 76.4% 75.8% 75.1% 70.3%

Resnet guided
LGD

78.4% 77.8% 74.5% 77.7% 68.1% 76.7% 76.2% 77.2% 72.0%

Table S8. The details of Table 5.
Defense Clean F v3 e4 I4 ens e4 F v3 e16 I4 ens e16 F v4 e4 I4 v4 e4 F v4 e16 I4 v4 e16

NA 76.6% 22.8% 8.0% 25.5% 5.0% 60.7% 62.4% 48.2% 35.1%
LGD 76.3% 74.8% 73.0% 68.4% 63.0% 74.9% 74.7% 74.7% 69.7%
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