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1. APPENDIX A: Derivation of the transformation update step under the transformation consis-
tency loss

In this Appendix, we start by briefly reviewing the formulation underlying the optical flow algorithm of Liu [3]. We then
extend this formulation to our multi-view setting by adding the correspondence term

Ecorr(T1, T2) =

∫∫ (
|u1(x, y)− u2(x, y)|2 + |v1(x, y)− v2(x, y)|2

)
dxdy, (1)

which forces small differences between the transformations T1 and T2.

1.1. Single image optical-flow

Let p = (x, y) denote the image coordinates and F1(p) = (u1(p), v1(p)) the flow field between image J1 and image I1.
The optical flow objective function addressed in [3] is given by

EOF(u, v) =

∫
ψ(|I1(p+ F1(p))− J1(p)|2)dp+ α

∫
φ(|∇u1(p)|2 + |∇v1(p)|2)dp. (2)

In our case, we are interested in the robust penalty functions ψ(z) =
√
z2 + ε2 and φ(z) =

√
z2 + ε2.

Under the incremental flow framework, assuming some initial estimate F1 of the flow field is available, the goal is to find
the best increment dF1 = (du, dv). The objective function in (2) can thus be written as

EOF(du, dv) =

∫
ψ(|I1(p+ F1(p) + dF1(p))− J1(p)|2)dp

+ α

∫
φ(|∇(u1(p) + du1(p))|2 + |∇(v1(p) + dv1(p))|2)dp (3)

Let Iz,1(p) = I1(p + F1(p)) − J1(p), Ix,1(p) = ∂
∂xI1(p + F1(p)), and Iy,1(p) = ∂

∂y I1(p + F1(p)). Then the term
I1(p+ F1(p) + dF1(p))− J1(p) can be linearized by a first order Taylor expansion as follows

I1(p+ F1(p) + dF1(p))− J1(p) ≈ Iz,1(p) + Ix,1(p)du1(p) + Iy,1(p)dv1(p). (4)

Vectorizing u1, v1, du1, dv1, Ix,1, Iy,1, Iz into U1, V1, dU1, dV1, Ĩx,1, Ĩy,1, Ĩz,1, the energy function in (3) can be discretized
as

EOF(dU1, dV1) =
∑
p

ψ(fp,1) + α
∑
p

φ(gp,1), (5)

where

fp,1 = (δTp (Ĩz,1 + Ix,1dU1 + Iy,1dV1))2 (6)

gp,1 = (δTp (Dx(U1 + dU1)))2 + (δTp (Dy(U1 + dU1)))2 + (δTp (Dx(V1 + dV1)))2 + (δTp (Dy(V1 + dV1)))2 (7)

Here, δp is a vector with 1 at the pth location and 0 everywhere else, Dx,Dy are matrices that correspond to convolutions
with the horizontal and vertical derivative filters [−1 1], [−1 1]T , respectively, and Ix,1 = diag(Ĩx,1), Iy,1 = diag(Ĩy,1).



1.2. Multi-view optical-flow

In our multiview setting, we are seeking two flow fields. Our approach is to alternate between fixing the second flow field
and solving for the first, and vice versa. Without loss of generality, let us regard the second flow field U2, V2 as constant as
solve for dU1, dV1.

Adding the discretized correspondence term of (1) to (5), the multi-view optical flow loss for updating dU1, dV1 can be
written as

EMV-OF(dU1, dV1) =
∑
p

ψ(fp,1) + α
∑
p

φ(gp,1) + α∗c
∑
p

tp,1, (8)

where

tp,1 = (δTp (U1 + dU1 − U2))2 + (δTp (V1 + dV1 − V2))2 (9)

and α = αr

λ , α
∗
c = αc

λ .
The key idea behind the Iterative Re-weighted Least Squares (IRLS) method [1] is to linearize the functions ψ and φ and

regard their gradients as constant in each iteration. In our case,

∇U1
EMV-OF(dU1, dV1) =

∑
p

ψ
′
(fp,1)∇U1

fp,1 + α
∑
p

φ
′
(gp,1)∇U1

gp,1 + α∗c
∑
p

∇U1
tp,1, (10)

where

∇U1fp,1 = 2(Ix,1δpδTp Ix,1dU1 + Ix,1δpδTp (Iz,1 + Iy,1dV1)), (11)

∇U1
φp,1 = 2((DTx δpδ

T
p Dx + DTy δpδ

T
p Dy)(dU1 + U1)), (12)

∇U1
tp,1 = 2(δpδ

T
p )(dU1 + U1 − U2). (13)

A similar expression can be derived for ∇V1EMV-OF(dU1, dV1). Equating ∇U1EMV-OF and ∇V1EMV-OF to zero and reorga-
nizing yields

(Ψ
′

1I2x,1 + αL1 + α∗cId)dU1 + Ψ
′

1Iy,1Ix,1dV1 = −Ψ
′

1Ix,1Iz,1 − (αL1 + α∗cId)U1 + α∗cU2 (14)

Ψ
′

1Ix,1Iy,1dU1 + (Ψ
′

1Iy,1 + αL1 + α∗cId)dV1 = −Ψ
′

1Iy,1Iz,1 − (αL1 + α∗cId)V1 + α∗cV2 (15)

where Id is the identity matrix and L1 = DTxΦ
′

1Dx + DTy Φ
′

1Dy , with Φ
′

1 and Ψ
′

1 denoting diagonal matrices with {φ′(gp,1)}
and {ψ′(fp,1)} on their diagonals. Writing this system of equations in matrix form, we get(

Ψ
′

1I2x,1 + αL1 + α∗c Ψ
′

1Iy,1Ix,1
Ψ

′

1Iy,1Ix,1 Ψ
′

1I2y,1 + αL1 + α∗c

)(
dU1

dV1

)
= −

(
Ψ

′

1Ix,1Iz,1 + αL1U1 + α∗c(U1 − U2)

Ψ
′

1Iy,LIz,1 + αL1V1 + α∗c(V1 − V2)

)
The idea in IRLS is to regard Φ′,Ψ′ as fixed (computed from the flow in the previous iteration), and obtain dU1, dV1 as the
solution to this linear set of equations. Then Φ′,Ψ′ are updated based on the new dU1, dU2, leading to a new set of equations,
etc.

Once U1, V1 are determined, we keep them fixed and update U2, V2 in a similar manner.



2. Appendix B : Appearance consistency
Recall that the overall multiview NLV objective is defined as

EMV-NLV(T1, J1,DB1, T2, J2,DB2) = ENLV(T1, J1,DB1) + ENLV(T2, J2,DB2) + αcEcorr(T1, T2, J1, J2). (16)

The correspondence term to maintain appearance consistency across views is

Ecorr(T1, J1, T2, J2) =

λ
αc

∫∫
ψ
(
‖T −11 {J1}(x, y)− T −12 {J2}(x, y)‖2

)
dxdy +

∫∫
ψ
(
‖∇wx(x, y)‖2 + ‖∇wy(x, y)‖2

)
dxdy, (17)

where wx(x, y) = u1(x, y)− u2(x, y) and wy(x, y) = v1(x, y)− v2(x, y).
Since T1{I1}(x, y) = I1(x+u1(x, y), y+v1(x, y)) and the flow field u1, v1 is smooth, we can approximate T −11 {J1}(x, y) ≈

J1(x− u1(x, y), y − v1(x, y)). Similarly, T −12 {J2}(x, y) ≈ J2(x− u2(x, y), y − v2(x, y)).

2.1. Image update

As we show later on in Appendix C, setting the gradient of the objective w.r.t. J1 to zero, leads to

J1(x, y) =γ1(x, y)Z1(x, y) + δ1(x, y)Ic
1(x, y) + (1− γ1(x, y)− δ1(x, y))J2→1(x, y), (18)

where J2→1 is the image J2 warped to the coordinate system of J1, and

γ1(x, y) =
W 1

data(x, y)

W 1
data(x, y) + h2

M2 + h2

M2

W 1
data(x,y)

M1
data(x,y)

C(x, y)
,

δ1(x, y) =
h2

M2

W 1
data(x, y) + h2

M2 + h2

M2

W 1
data(x,y)

M1
data(x,y)

C(x, y)
, (19)

with M1
data(x, y) = 1

λψ(‖J1(x, y)− J2→1(x, y)‖2).
Here, Z1 is an image obtained by replacing each patch in J1 by a weighted combination of its K Nearest Neighbor (NN)

patches from the database DB1, W 1
data(x, y) = 1

λψ(‖J1(x, y)− Ic
1(x, y)‖2), and C is an occlusion mask indicating for which

pixels in I2 we could find a good match in I1 with high confidence. Since Z1, γ1 and δ1 are nonlinear functions of the
unknown J1, we iterate between computing J1 according to (18), and updating γ1 and δ1 according to (19). This whole
process is done while regarding J2→1 as constant. The update of J2 is done similarly, by regarding J1→2 as constant.

2.2. Transformation update

For this formulation, the term Ecorr contains two parts which depend on T , as described below:

E(u1, v1, u2, v2) =

λ

∫∫
ψ(‖T −11 J1(x, y)− I1(x, y)‖2) + ψ(‖T −12 J2(x, y)− I2(x, y)‖2) + ψ(‖T −11 J1(x, y)− T −12 J2(x, y)‖2)dxdy

+ αr

∫∫
ψ(‖∇u1(x, y)‖2 + ‖∇v1(x, y)‖2)dxdy + αc

∫∫
ψ(‖∇wx(x, y)‖2 + ‖∇wy(x, y)‖2)dxdy. (20)

Here (wx, wy) is the correction field that is added to the second view. We minimize this objective w.r.t. to T1 and T2 by
extending the IRLS method [3]. See Appendix D for detailed description.



3. APPENDIX C : Derivation of the image update step under the appearance consistency loss
We present the mathematical procedure for the first view, a similar procedure is applied to the second view. Minimizing

the objective function

EMV-NLV(T1, J1,DB1, T2, J2,DB2) =

ENLV(T1, J1,DB1) + ENLV(T2, J2,DB2) + αcEcorr(T1, T2, J1, J2), (21)

with respect to J1 requires setting the gradient of Erec(J1,DB1) + λEdata(T1{I1}, J1) + αcEcorr(T −11 {J1}, T
−1
2 {J2}) with

respect to J1 to zero. In the following, Ic1 and J1 denote the column-vector representations of T1{I1} and J1(x, y), respec-
tively. We can express the recurrence term and the data term as

Erec(J1,DB1) = −
∑
j

log

(∑
i

exp
(
− 1

2h2 ‖QjJ − q1,i‖2
))

, (22)

Edata(T1{I1}, J1) =
∑
k

ψ((δTk (J1 − Ic1))2), (23)

where q1,i is the ith patch in DB1, Qj is the matrix that extracts jth M ×M patch from the image, and δk is as in (7). The
correspondence term that depends on J1 is:

Ecorr(T1, J1, T2, J2) = λ

∫∫
ψ
(
‖T −11 {J1}(x, y)− T −12 {J2}(x, y)‖2

)
dxdy (24)

Assuming a smooth flow field (u, v) yields:

T −11 {J1}(x, y)−T −12 {J2}(x, y)

≈ J1(x− u(x, y), y − v(x, y))− J2(x− u(x, y) + wx(x, y), y − v(x, y) + wy(x, y))

≈ J1(x, y)− J2(x+ wx(x, y), y + wy(x, y)). (25)

To simplify the exposition we define J2→1(x, y) = J2(x+wx(x, y), y+wy(x, y)). Substituting (25) into (24) and discretiz-
ing, we get

Ecorr(T1, J1, T2, J2) = λ
∑
k

ψ
(
Ck(δTk (J2→1 − J1))2

)
, (26)

where Ck = 1 if the kth pixel has been warped correctly with high precision and Ck = 0 otherwize. We compute the gradient
of the above components with respect to J1 and set the total sum to zero.

3.1. Derivations

As shown in [2],

∇J1Erec = 1
h2

∑
j

QTj QjJ1 − M2

h2 Z1, (27)

where, Z1 = 1
M2

∑
j Q

T
j z1,j , z1,j =

∑
k wkjq1,k, and wkj =

exp( −12h2 ‖QjJ1−q1,k‖2)∑
k exp( −12h2 ‖QjJ1−q1,k‖2)

. This expression can be interpreted

as follows. The image Z1 is constructed from patches {z1,j}. The patch z1,j is a weighted average of theK nearest neighbors
of the jth patch in J1, weighted according to their similarity to this patch. Here, M is the patch width.

The gradient of the data term is given by

λ∇J1Edata =
∑
k

δkδ
T
k (J1 − Ic1)

w1,data
k

, (28)

where

w1,data
k =

1

λ

√
(δTk (Ic1 − J1))2 + ε2. (29)



Finally, the gradient of the correspondence term is given by

λ∇J1Ecorr =
∑
k

Ckδkδ
T
k (J1 − J2→1)

m1,data
k

(30)

where

m1,data
k =

1

λ

√
(δTk (J2→1 − J1))2 + ε2. (31)

Setting to zero the sum of the gradients of these three energy terms, and noting that up to boundary effects, 1
M2

∑
j Q

T
j Qj

equals the identity matrix, we obtain (in spatial coordinates)(
M2

h2 +
1

W1,data(x, y)
+

C(x, y)

M1,data(x, y)

)
J1(x, y) = M2

h2 Z1(x, y) +
1

W1,data
Ic1(x, y) +

C(x, y)

M1,data(x, y)
J2→1(x, y).

(32)

Similarly, for the second view,(
M2

h2 +
1

W2,data(x, y)
+

C(x, y)

M2,data(x, y)

)
J2(x, y) = M2

h2 Z2(x, y) +
1

W2,data
Ic2(x, y) +

C(x, y)

M2,data(x, y)
J1→2(x, y). (33)



4. APPENDIX D: Derivation of the transformation update step under the appearance consistency
loss

To minimize the objective function

E(u1, v1, u2, v2) =

λ

∫∫
ψ(‖T −11 J1(x, y)− I1(x, y)‖2) + ψ(‖T −12 J1(x, y)− I2(x, y)‖2) + ψ(‖T −11 J1(x, y)− T −12 J2(x, y)‖2)dxdy

+ αr

∫∫
ψ(‖∇u1(x, y)‖2 + ‖∇v1(x, y)‖2)dxdy + αc

∫∫
ψ(‖∇wx(x, y)‖2 + ‖∇wy(x, y)‖2)dxdy (34)

with respect to T1 and T2 we set the gradient with respect to T1 and T2 to zero. We follow Liu’s [3] IRLS approach to
simultaneously update the two flow fields.
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