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1. How to Identify the Discriminative Region from an Image?
To search the discriminative region from an image in zero-shot learning (ZSL), two weakly supervised learning approaches

can be considered: 1) directly regressing the locations of the identified region (e.g., the proposed zoom scheme in our LDF
model); 2) extracting multiple region proposals (e.g., EdgeBox [7]) for the image and then selecting the most discriminative
one. In this paper, we didn’t utilize the latter region proposal method based on the following considerations. First, the goal
of the region proposal algorithm [7] is to identify “objects”. However, as shown in Figure 5 and claimed in Section 4.2, in
ZSL, the identified region may contain context elements to match its user-defined attributes. Such region is not exactly equal
to the “object” region and hard to be captured by EdgeBox. Second, processing multiple proposals (typically 2,000) for each
image is quite inefficient, and selecting the proper region from 2,000 ones is also difficult in weakly supervised settings. We
have conducted an experiment to test the region proposal approach for ZSL.

Specially, we first extract 2,000 EdgeBox proposals for each image. Then we replace the pool5 layer in SS-BE-baseline
(VGG19) with the RoI Pooling layer proposed in Fast RCNN [3]. The images with their region proposals are imported into
the model, and the model could output the compatibility score for each region. Following the standard multiple instance
learning (MIL) setting, the region with highest compatibility score is selected to compute the loss function as in (6). The
network finally obtains 72.67% on AwA dataset. This result is even lower than SS-BE-Learned (Table 1, 78.35%), which
directly extract image features from full-size images. Moreover, the runtime is 7∼8 times longer than our zoom scheme.

2. The Bilinear Interpolation Operation
In Section 4.2, to obtain better representation for finer localized cropped region xcrop, the bilinear interpolation is utilized

to adaptively zoom the cropped region to the same size with the original image. Concretely, for a point (i, j) of the zoomed
region, its value xzoom

(i,j) can be computed by linearly combining the values of nearest four points in the cropped region.
Formally,

xzoom
(i,j) =

∑
α,β

|1− α− {i/λ}||1− β − {j/λ}|xcrop
(m,n),

m = [i/λ] + α+ zx − zs, α = 0, 1

n = [j/λ] + β + zy − zs, β = 0, 1

(1)

where λ is the upsampling factor, i.e., λ = 1/zs. [·] and {·} is the integral and fractional part, respectively.

3. Experiments with Three Scales on AwA
As we have mentioned in Section 5.2, for AwA dataset, only one zoom operation is performed and the two-scale model is

adopted. We claim the reason is that the objects in AwA images are usually large and centered. To verify this, in this section,
we analyze the performance of three-scale MS-BE-Learned baseline on AwA. The experiment is conducted with GoogLeNet
and all the experimental settings are the same as we described in Section 5.2. The performance of each single scale is shown
in Table 1.

Additionally, the parameter zs in Eq. (2) represents the length of the cropped regions. In scale 1 and scale 2, we respec-
tively count the zs values for all unseen images and show the mean value of the zs in Table 1. It can be seen that when the
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ZSL performance on AwA mean value of zs

SS-BE-Learned 75.19 -

MS-BE-Learned (Scale 1) 75.47 0.87
MS-BE-Learned (Scale 2) 77.12 0.98

MS-BE-Learned (Scale 3) 77.05 -

Table 1: The detailed ZSL results (%) on each scale and the mean value of zs parameter.

three-scale model is adopted on AwA, the performance of the second scale is higher than the first scale (77.12% vs. 75.47%).
However, the performance of the third scale does not show the further improvement (77.05% vs. 77.12%). When we inspect
the mean zs values in the second scale, it can be found that the scale size of the cropped region is nearly 1 (0.98), that is, the
zoom net in the second scale actually does not perform any cropping operation and directly send the original image to the
third scale. As we have claimed, the objects in AwA images are large and centered. Through one time zoom operation, the
network can capture the main object and the third scale is actually useless in the model.

ZSL performance on AwA The dimension of LA

SS-AE-Learned (LA) 75.75 k (85)
SS-AE-Learned (LA) 75.83 2k (170)
SS-AE-Learned (LA) 76.01 3k (255)

Table 2: The ZSL results (%) with different dimension of latent attributes.

4. The Effect of the Dimension of Latent Attribute
As we mentioned in Section 4.3.2, the dimension of the latent attributes (LA) is set to k, i.e., the same with the user-defined

attributes (UA). In this section, we explore the effectiveness of the dimension of latent attributes and conduct experiments on
AwA dataset with GoogLeNet. Specially, we train the SS-AE-Learned baseline with different dimensions of LA (i.e., k, 2k
and 3k), and perform ZSL prediction with the latent attributes only. The results are shown in Table 2. It can be seen that with
the larger dimension of LA, the ZSL performance improves. But the improvement is slight and the performance in general is
robust to the dimension of LA.

5. The Discriminativeness of the Learned Latent Attributes
In this section, we show more visualized examples to illustrate the discriminative property of latent attributes. For a latent

attribute element, the images which have largest and smallest activations over this element are shown in Figure 1. Meanwhile,
the examples selected with the learned UA features are shown in Figure 2 for comparison. From Figure 2, it can be seen
that the user-defined attributes are shared in many objects. Another discovery is that the prediction results of user-defined
attributes will be affected by mid-level cues, e.g., colors. For example, for UDA5 element, the chimpanzee, whale and pig
objects are falsely predicted as orange due to the existing orange backgrounds. For UDA64 element, the persian cat and pig
images are falsely predicted as arctic. It is possible that the two animals share white appearances.

6. Generalized Zero-Shot Learning Results
In conventional zero-shot learning (cZSL), ZSL methods are trained on seen classes and evaluated on unseen ones. The

basic assumption in cZSL is that test instances always come from the unseen classes (denoted as U → U), which is actually
unrealistic in real-world applications. Motivated by this, recent ZSL works [2, 6] aim to measure the zero-shot performance
in the generalized zero-shot learning (gZSL) setting. In gZSL, the test images are assumed to come from all target classes
including both seen and unseen categories.



AwA CUB
Method AU→T AS→T H AU→T AS→T H

DAP [4]∗ 2.4 77.9 4.7 4.0 55.1 7.5
IAP [4]∗ 1.7 76.8 3.3 1.0 69.4 2.0

ConSE [5]∗ 9.5 75.9 16.9 1.8 69.9 3.5
SynCo-vs-o [1]∗ 0.3 67.3 0.6 8.4 66.5 14.9
SynCstruct [1]∗ 0.4 81.0 0.8 13.2 72.0 22.3

LDF (Ours) 9.8 87.4 17.6 26.4 81.6 39.9

Table 3: Generalized zero-shot learning results (%). All results are obtained with GoogLeNet features. ∗ means that the
numbers of the method are cited from [2], since the original paper does not report the gZSL results. H denotes the harmonic
mean.

Similar to [2], 20% of the images from seen classes are extracted and then merged with the images from unseen classes to
form the new test set. We denoted the joint label space of seen and unseen classes as T = S ∪ U and evaluate the proposed
LDF model in terms of accuracy on U → T and S → T , which are denoted as AU→T and AS→T , respectively. AU→T
indicates the accuracies of classifying test images from unseen classes into the joint label space while AS→T indicates the
accuracies of recognizing seen objects into the joint label space. Moreover, similar to [6], the harmonic mean is computed to
measure the ZSL methods with considering both the accuracy of seen classes and the accuracy of unseen classes. Formally,

H =
2AU→T AS→T
AU→T +AS→T

(2)

The experiments are performed on both AwA and CUB datasets. The GoogLeNet model is utilized and the results are
shown in Table 3. It can be seen that on both datasets, the proposed LDF model significantly outperforms previous methods
on all the three metrics, which confirms the advantage of our method under the gZSL setting.
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Figure 1: The visual examples of latent discriminative attributes (LA) on AwA. ‘LAX’ denotes the X-th element of the LA
features. The LA features are obtained with the VGG19 SS-AE-Learned baseline. The first five images are top-5 images with
largest activations over this element and the last five images are selected examples with smallest activations.
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Figure 2: The visual examples of user-defined attributes (UA) on AwA. ‘UDAX’ denotes the X-th element of the UA features.
The UA features are obtained with the VGG19 SS-AE-Learned baseline. The first five images are top-5 images with largest
activations over this UA element and the last five images are selected examples with smallest activations.


