Empirical study of the topology and geometry of deep networks (Supplementary material)

1. Paths

Figure 1: Scenario 1. Classification regions (shown with different colors), and illustration of different paths between images x_1, x_2 . Left: The convex path between two datapoints might not be entirely included in the classification region (note that the linear path traverses 4 other regions). Right: Illustration of a nonconvex path that remains in the classification region. The image is obtained by stitching normal cross-sections spanned by $r(x_1)$ (adversarial perturbation of x_1) and $p_i - p_{i+1}$ (two consecutive anchor points in the path \mathcal{P}).

Figure 2: Scenario 2. Classification regions (shown with different colors), and illustration of different paths between images x_1 and $x_2 = \tilde{x}_2 + r$, where r is the targeted adversarial perturbation. Top: The convex path between two datapoints might not be entirely included in the classification region. Bottom: Illustration of a nonconvex path that remains in the classification region. The image is obtained by stitching normal cross-sections spanned by r and $p_i - p_{i+1}$ (two consecutive anchor points in the path \mathcal{P}).

Figure 3: Scenario 3. Classification regions (shown with different colors), and illustration of different paths between images x_1, x_2 . Top: The convex path between two datapoints might not be entirely included in the classification region. Bottom: Illustration of a nonconvex path that remains in the classification region. The image is obtained by stitching normal cross-sections spanned by $r(x_1)$ (adversarial perturbation of x_2) and $p_i - p_{i+1}$ (two consecutive anchor points in the path \mathcal{P}).