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S-1. Depth Map Refinement
Optionally, we refine local details of a depth map D̂ us-

ing superpixels. An estimated depth map is often blurry
around depth discontinuities. To reduce such artifacts, we
use the color information in an image, since depth discon-
tinuities occur at color edges in general. To extract color
edges, we use the LSC superpixel method [S1].

We generate D̂s
n and D̂σ

n using the superpixel segmen-
tation result of an input image, where n is the number of
superpixels. D̂s

n has an identical depth within each super-
pixel, which is the mean of depth values in the correspond-
ing area of D̂. Similarly, D̂σ

n records the standard devi-
ations of depths within superpixels. We use the standard
deviations to guide the refinement and penalize depths sig-
nificantly deviated from mean values.

The number n of superpixels should be selected appro-
priately. If n is too large, there are too many superpixels of
small sizes and the mean estimation becomes unreliable. On
the contrary, if n is too small, each superpixel covers a big
area, and the assumption that all its pixels have the same
depth becomes invalid. Considering this tradeoff, we use
four numbers n1 = 40, n2 = 80, n3 = 160 and n4 = 320
to refine D̂ into the final depth map D̃.

To refine the depth of each pixel x, we first calculate D̂s

by averaging all D̂s
n. Also, we obtain the standard score

map D̂z as follows.

D̂z(x) =
1

4

4∑
k=1

D̂(x)− D̂s
nk
(x)

D̂σ
nk
(x)

. (1)

If D̂z exceeds an upper bound or a lower bound, we penal-
ize the depth value. We set these bounds to 0.5 and −0.5,
and define the depths corresponding to these bound values
as D̂over and D̂under, respectively. Then, we penalize the
depths, which exceed bounds, by

D̃(x) (2)

=


D̂(x)+D̂under(x)

2 if D̂(x) < D̂under(x),
D̂(x)+D̂over(x)

2 if D̂(x) > D̂over(x),

D̂(x) otherwise.

This refinement technique improves depth estimation re-
sults quantitatively and qualitatively.

S-2. More Ablation Study
The proposed algorithm has three key components:

• DEN: depth estimation network, modified from
ResNet-152 [11].

• DBE: depth-balanced Euclidean loss for estimating
shallow depths more reliably.

• FDC: Fourier domain combination of multiple depth
map candidates.

Also, we denote the depth map refinement process in Sec-
tion S-1 as ‘REF.’ We apply the components sequentially
to our network ‘DEN’ and also to three popular networks
AlexNet [16], VGG19 [S2], and ResNet-52 [11].

Table S-1 shows that each component contributes to the
performance improvement. The only exception is that DBE
does not improve AlexNet. This is because, as compared
with the other networks, AlexNet yields relative large er-
rors for distant objects, as well as for near objects. Thus,
balancing the loss for shallow depths is not effective in this
case. The results in Table S-1 indicate that each component
is not only effective for the proposed DEN, but also for the
other networks. Therefore, these components can be used
for other single-image depth estimation techniques as well.

In Table S-2, we compare the proposed algorithm includ-
ing ‘REF’ with the conventional algorithms [1, 3, 5, 6, 19-
21, 28, 38, 43]. We see that the proposed algorithm still
achieves competitive depth estimation performances, even
when DEN is replaced by VGG19 or ResNet-50, which
have fewer layers and parameters. Also, note that [3] and
[19] are the state-of-art algorithms, which are based on
VGG19 and ResNet-52, respectively. Compared to these
algorithms, ‘VGG19+DBE+FDC(18)+REF’ and ‘ResNet-
52+DBE+FDC(18)+REF’ provide better performances.

Figure S-1 compares depth maps qualitatively. Again,
when the components DBE, FDC, and REF are incorpo-
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Table S-1. The three components DBE, FDC, and REF of the proposed algorithm improve the depth estimation performances of AlexNet,
VGG19, and ResNet-50, as well as those of DEN.

The lower, the better The higher, the better
RMSE (lin) RMSE (log) Abs Rel Sqr Rel δ < 1.25 δ < 1.252 δ < 1.253

AlexNet 0.836 0.296 0.244 0.238 60.4% 87.6% 96.4%
AlexNet+DBE 0.870 0.299 0.243 0.244 60.3% 87.1% 96.3%
AlexNet+DBE+FDC(18) 0.826 0.295 0.247 0.243 61.5% 87.7% 96.2%
AlexNet+DBE+FDC(18)+REF 0.825 0.295 0.247 0.242 61.6% 87.8% 96.2%

VGG19 0.616 0.213 0.163 0.120 76.6% 95.2% 98.9%
VGG19+DBE 0.619 0.211 0.158 0.116 76.9% 95.3% 99.0%
VGG19+DBE+FDC(18) 0.617 0.209 0.157 0.113 77.0% 95.4% 99.0%
VGG19+DBE+FDC(18)+REF 0.617 0.209 0.157 0.113 77.2% 95.4% 99.1%
ResNet-50 0.591 0.203 0.151 0.108 79.4% 95.5% 99.0%
ResNet-50+DBE 0.603 0.203 0.147 0.106 79.6% 95.6% 99.0%
ResNet-50+DBE+FDC(18) 0.597 0.201 0.145 0.102 79.3% 95.7% 99.1%
ResNet-50+DBE+FDC(18)+REF 0.596 0.200 0.144 0.101 79.4% 95.8% 99.1%
DEN 0.586 0.199 0.145 0.104 80.3% 96.1% 99.0%
DEN+DBE 0.585 0.196 0.142 0.102 81.3% 96.1% 98.9%
DEN+DBE+FDC(18) 0.572 0.193 0.139 0.096 81.5% 96.3% 99.1%
DEN+DBE+FDC(18)+REF 0.570 0.192 0.139 0.095 81.7% 96.3% 99.1%

Table S-2. Performance comparison of the proposed algorithm, the three network-substituted versions of the proposed algorithm, and the
conventional algorithms. The best results are boldfaced, and the second best ones are underlined. Here, ‘DEN+DBE+FDC(18)+REF’ is
the proposed algorithm.

The lower, the better The higher, the better
RMSE (lin) RMSE (log) Abs Rel Sqr Rel δ < 1.25 δ < 1.252 δ < 1.253

Zoran et al. [43] 1.220 0.430 0.410 0.570 - - -
AlexNet+DBE+FDC(18)+REF 0.825 0.295 0.247 0.242 61.6% 87.8% 96.2%
Li et al. [20] 0.821 - 0.232 - 62.1% 88.6% 96.8%
Liu et al. [21] 0.824 - 0.230 - 61.4% 88.3% 97.1%
Baig et al. [1] 0.802 - 0.241 - 61.0% - -
Eigen et al. [6] 0.877 0.283 0.214 0.204 61.4% 88.8% 97.2%
Wang et al. [38] 0.745 0.262 0.220 0.210 60.5% 89.0% 97.0%
Roy et al. [28] 0.744 - 0.187 - - - -
Eigen and Fergus [5] 0.641 0.214 0.158 0.121 76.9% 95.0% 98.8%
Chakrabarti et al. [3] 0.620 0.205 0.149 0.118 80.6% 95.8% 98.7%
VGG19+DBE+FDC(18)+REF 0.617 0.209 0.157 0.113 77.2% 95.4% 99.1%
Laina et al. [19] 0.597 0.204 0.140 0.106 81.1% 95.3% 98.8%
ResNet-50+DBE+FDC(18)+REF 0.596 0.200 0.144 0.101 79.4% 95.8% 99.1%
DEN+DBE+FDC(18)+REF 0.570 0.192 0.139 0.095 81.7% 96.3% 99.1%

rated, AlexNet, VGG19, and ResNet-52 yield higher qual-
ity depth maps. Compared with the results using the net-
works only, the results using the three components estimate
the depths more accurately and also yield less blurring arti-
facts.

Finally, Figure S-2 compares the results of the proposed
algorithm ‘DEN+DBE+FDC(18)+REF’ with those of the
network-substituted versions. We observe that the proposed
algorithm yields the best results by employing a more ef-
fective network. However, even with VGG19 or ResNet-52,
the proposed algorithm yields decent depth maps.
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Figure S-1. Comparison of estimated depth maps. Upper images show depth maps, and lower images are the corresponding error maps.
(a) Input images, (b) ground-truth depth maps and color coding schemes, (c) AlexNet, (d) AlexNet+DBE+FDC(18)+REF, (e) VGG19,
(f) VGG19+DBE+FDC(18)+REF, (g) ResNet-52, and (h) ResNet-52+DBE+FDC(18)+REF.
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Figure S-2. Comparison of estimated depth maps: (a) input images, (b) ground-truth depth maps and color cod-
ing schemes, (c) AlexNet+DBE+FDC(18)+REF, (d) VGG19+DBE+FDC(18)+REF, (e) ResNet-52+DBE+FDC(18)+REF, and (f)
DEN+DBE+FDC(18)+REF.
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