Future Person Localization in First-Person Videos: Supplementary Material
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1. Data Statistics

Figure 1 presents frequency distributions of lengths
of the tracklets extracted from First-Person Locomotion
Dataset and Social Interaction Dataset [2]. These statistics
revealed that most people appeared only for a short time
period. In our experiments, we tried to pick out tracklets
which were 1) longer enough to learn meaningful tempo-
ral dynamics and 2) observed frequently in the datasets to
stably learn our network. These requirements resulted in
our 50,000 samples consisting of the tracklets longer than
or equal to 20 frames (i.e., 2 seconds at 10 fps) and our
problem setting of ‘predicting one-second futures from one-
second histories’.

Details of sample division: We first calculated the mean
of scale normalized lengths between the left hip and the
right hip for the target person. If this mean is less than
0.25 we categorized the clip as Across. In the remaining
clips, we labeled each frame of the clip as either Toward if
X-coordinate of the left hip is larger than that of the right
hip and Away otherwise. If the number of frames labeled
Toward is more than 75% of the total number of frames in
the clip, the clip is categorized as Toward and as Away if it
is less than 25%.

2. Additional Results
2.1. Other Choices of Input/Output Lengths

In our experiments, we fixed the input and output lengths
Torev, Truture t0 be Threy = Truture = 10. Table 1 shows
how performances changed for other choices of 7}, and
Truture- Overall, longer input lengths led to better perfor-
mance (Tprev = 6 vs. 10). Also, predicting more distant
futures becomes more difficult (Tfyture = 10 vs. 6). To

Torev  Ttuture Walking direction

Toward Away Across Average
6 10 111.39 7854 98.41 79.77
10 10 109.03 75.56  93.10 77.26
6 6 53.12 4649 5275 46.16
10 6 52.69 46.10 53.15 45.92

Table 1. Different Input/Output Lengths. Final Displacement
Error (FDE) for various combinations of input (7,rev) and output
(Ttuture) lengths.

Torev Walking direction

Toward Away Across Average
Social LSTM [1] 299.81 22230 236.48 223.16
Ours 184.62 12541 169.01 124.85

Table 2. Predicting Two-Second Futures. Final Displacement
Error (FDE) where Tty ture Was set to Trigure = 20.

Method Walking direction

Toward Away  Across Average
Xin 13643 12410 11756 127.40
Xin + Ein 136.52 12422 115.00 127.28
Xin + Pin 133.10 12457 11480 125.78
Ours (Xi, + Eiy, + FPn) 13194 12548 112.88 12542

Table 3. Ablation Study on Social Interactions Dataset [2]. Fi-
nal displacement error (FDE) for various combination of input fea-
tures. Notations were the same as those of Table 2.

receive shorter inputs, we applied 1-padding to the first and
second convolution layer in each stream.

We also compared our method against Social LSTM [1]
on the task of predicting two-second futures (i.e., Ttyture =
20) in Table 2. We confirmed that our method still worked
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Figure 1. Distributions of Tracklet Lengths. Frequency distributions of various lengths of tracklets extracted from First-Person Locomo-
tion Dataset and Social Interaction Dataset [2] for three walking directions and the entire database, respectively.

well on this challenging condition. To generate 20 frame
prediction, we changed the kernel size of the deconvolution
layers of 3,3,3,3t03,5,7,7.

2.2. Other Visual Examples

Figure 2 shows additional visual examples of how our
method, as well as several baselines, predicted future loca-
tions of people.

2.3. Ablation Study on Social Interaction Dataset

We performed an ablation study on Social Interaction

Dataset [2] in Table 3. While we computed ego-motion
based on optical flows, the combination of ego-motion and

pose cues contributed to performance improvements.
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Figure 2. Qualitative Examples of Future Person Localization on First Person Locomotion Dataset. (Row 1) Even though input
sequence is almost static, our model is able to capture the left turn caused by the wearer’s ego-motion. (Row 2, 3) In the input sequence,
the target is changing the pose to move right. While compared model fails to predict because of being agnostic to the pose information,
our model produces a better prediction. (Row 4) The behavior with respect to complicated ego-motion. In the input sequence, the wearer
is turning left to avoid other pedestrians. However, in the future frames, the wearer moves to the opposite side to avoid contact with the
target. In this case, our prediction is perturbed due to ego-motion and predicts worse than Social LSTM. (Row 5) Our model works well
both in outdoor scenes as well as indoor scenes.



