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The following document shows further results which are not included in the submitted paper. We apply
our proposed method Distillation Guided Routing (DGR) on AlexNet [2] and ResNet-50 [1] models.
For AlexNet, we identify the critical routing nodes in the Critical Data Routing Paths (CDRPs) at the
5 convolutional layers’ output channels. For ResNet, we identify the critical routing nodes in CDRPs
at the 16 bottleneck block layers’ output channels. The hyperparameter settings are the same with the
experiments of VGG-16 model [4]. We perform SGD on the same input x for T = 30 iterations, with
learning rate of 0.1, momentum of 0.9 and no weight decay. Balanced parameter γ in Equation (1) in
the main body is set to 0.05.

1. Quantitative Analysis
In this section, we report classification accuracy results of the subnetwork outlined by identified criti-

cal data routing paths. We compare our method against two baseline methods, Adaptive Weight Routing
(AWR) and Adaptive Activation Routing (AAR), both of which trim out the CDRPs iteratively based
on weights norms and activations norms. For ResNet model, since we only perform at the end of each
bottleneck block layer’s output, in which there are no explicit corresponding weights involved, we only
compare against with AAR baseline method.

Table 1 summarizes the performance of our method in terms of top-5 accuracy and sparsity. Since
the best routing paths selection criterion requires the top-1 prediction to be same with the full model, all
the methods achieve the same top-1 accuracy. However, our method achieves the highest top-5 accuracy
compared to other baseline methods, and only suffers minor top-5 accuracy degradation compared to the
full model. Our method also achieves far more sparse routing paths compared to the baseline methods.

Ablation study We also further validate the CDRPs by partially deactivating the critical nodes on the
identified CDRPs in the original full model, while keeping other non-critical nodes unchanged.

Figure 1a and 1b show the model accuracy degradation with different fractions of critical nodes being
deactivated in Top Mode and Bottom Mode, which deactivates the critical nodes starting from larger and



Table 1: Adaptive routing methods comparison with same top-1 prediction requirement. For sparsity,
lower is better

Methods Top-1 Acc. Top-5 Acc. Sparsity
AlexNet Full Model (%) 55.81 78.65 100.00
AWR (%) 55.81 73.68 93.20 ± 0.31
AAR (%) 55.81 71.71 88.13 ± 1.03
DGR (Ours) (%) 55.81 77.21 22.43 ± 4.67
ResNet-50 Full Model (%) 75.42 92.58 100.00
AAR (%) 75.42 87.32 72.32 ± 1.34
DGR (Ours) (%) 75.42 89.14 12.02 ± 4.50

(a) AlexNet (b) ResNet-50

Figure 1: The accuracy degradation when critical nodes are deactivated in the original full model,
with Top Mode and Bottom Mode. Only small fractions of critical nodes being deactivated will lead
severe performance degradation

smaller values of control gates respectively. With only small fractions of critical nodes on CDRPs pruned
out in the network, the model performance deteriorates severely, which validates the CDRPs identified
by our method are effective.

2. Semantic Concepts Emerge in CDRPs
Functional process of intra-layer routing nodes We use the t-SNE [3] method to display 50,000
ImageNet validation images’ intra-layer routing nodes representations in 2D embedding. We regard all
the individual critical nodes in a certain layer composing the intra-layer routing nodes. The encoding
representation is simply the optimized control gates λ∗

k for the k-th layer.

Conv1 Conv2 Conv3 Conv4 Conv5

Figure 2: t-SNE 2D embedding for AlexNet network.
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Figure 3: t-SNE 2D embedding for VGG-16 network.
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Figure 4: t-SNE 2D embedding for ResNet-50 network.

Figure 2, 3 and 4 show all the intra-layer routing nodes of convolutional layers and bottleneck
block layers in AlexNet, VGG-16 and ResNet-50 models. Each point stands for a single image. Points
with the same ground-truth labels are painted in the same color for visual effect. The more scattered



Table 2: The Area-Under-Curve (AUC) score for different binary classifier on adversarial sample
detection by discriminating CDRPs of real and adversarial image. Higher is better.

Num. of training samples 1 5 10

AlexNet
random forest 0.7220 0.7325 0.7770
adaboost 0.7415 0.7505 0.7630
gradient boosting 0.7525 0.7590 0.7845

Resnet-50
random forest 0.9120 0.9190 0.9210
adaboost 0.9145 0.9195 0.9200
gradient boosting 0.9255 0.9315 0.9345

points in the embedding indicate more discriminative ability of the corresponding intra-layer routing
nodes representation. From the figures, we can discover the degree of embedding discriminative ability
increases with ascending layer levels throughout three models. Moreover, for high level layers of deeper
models like VGG-16 and ResNet-50, the discriminative ability is more significant that those in the
shallower model like AlexNet.

Intra-class sample clustering The CDRPs also reflect the input data layout patterns. Figure 5a and 5b
show the agglomerative clustering results on the intra-class samples using the whole CDRPs represen-
tations obtained from VGG-16 network. We can discover that the clustering results correspond to input
layout patterns strongly. For example in Figure 5b, for the class ‘car wheel’, we find three typical clus-
ters. The second cluster mainly consists of the car body and wheels. The third cluster shows a single
wheel in the front view. The first cluster mainly consists of hard examples to classify. Particularly, there
is an image of the whole sports car, resulting in semantic ambiguity. Figure 5a also shows similar pat-
terns. These results indicate that the identified CDRPs reflect input patterns, and help to find out hard
examples or complex samples in the dataset.

3. Adversarial Sample Detection
We apply the proposed adversarial sample detection scheme in Section 3 on the CDRPs represen-

tations obtained from AlexNet and ResNet-50 to discriminate whether the CDRPs are from real or
adversarial samples. The experiment settings are the same with VGG-16 network, in which we ran-
domly sample 1/5/10 images and 1 image of each class from ImageNet training and validation datasets
as training and test samples respectively. Each sample is accompanied by an adversarial image, which
is generated by Equation (5). The target classes are from a random permutation of original classes.
Table 2 summarizes the binary classifiers’ performance in AUC score. Compared to VGG-16 network,
the CDRPs representations obtained from AlexNet are less discriminative when dealing with real and
adversarial images. The CDRPs representations from ResNet-50 are more discriminative than those of
VGG-16 network. Our results demonstrate that without complicated algorithm, the adversarial attacking
can be defended based on the discriminative CDRPs representation.

We also apply our method on large scale dataset. We use all the 50,000 validation images in ImageNet
dataset as test samples, and evenly sample 50,000 training images from 1,000 classes in ImageNet train-
ing dataset. Table 3 summarizes the results. Our method can achieve higher defense success rate even
with larger scale dataset, which validates that our method’s scalability and effectiveness in detecting the



class id = 402 
acoustic guitar

(a) The first cluster consists of singers playing guitar on the
stage, and the second cluster shows the front view of gui-
tars. Red bounding box indicates samples hard to classify,
which include an image with little area to show the guitar
on the corner.

class id = 479 
car wheel

(b) The second cluster mainly consists of the car body
and wheels. The third cluster shows the front view of car
wheels. Red bounding box indicates samples hard to clas-
sify, which include an image of the whole sports car

Figure 5: Intra-class sample clustering helps identify hard examples in the dataset. The top picture
shows agglomerative clustering results. The typical images of each cluster are shown below. Red
bounding box indicates hard examples.

Table 3: The Area-Under-Curve (AUC) score for different numbers of training and test samples in
our proposed adversarial sample detection scheme. All the CDRPs representations are obtained from
VGG-16 network.

Num. of training
samples

Num. of test
samples random forest adaboost gradient boosting

1 1 0.8792 0.8877 0.9051
5 1 0.8942 0.9057 0.9189

10 1 0.9041 0.9104 0.9147
50 50 0.9289 0.9084 0.9220

adversarial samples.
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