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5. Multimedia Material

A video showing the application of our framework to

solve several computer vision problems with event cameras

is available at: https://youtu.be/KFMZFhi-9Aw.

6. Optical Flow Estimation

Our framework seeks for the point trajectories on the im-

age plane that best fit the event data and it is able to take into

account all the information contained in the events: space-

time coordinates and polarity (i.e., sign) of the brightness

changes. More specifically, event polarity is incorporated

in the framework during the creation of the image patches

of warped events (equation (2) in the paper).

Figure 12 compares the elements of our framework (im-

age patches of warped events H and objective function f )

for a set of events whose optical flow we want to estimate,

in two scenarios:

1. Using polarity (bk = pk), i.e.,

H(x;θ) =
Ne

∑
k=1

pk δ (x−x′k(θ)). (7)

2. Not using polarity (bk = 1), i.e.,

H(x;θ) =
Ne

∑
k=1

δ (x−x′k(θ)). (8)

For illustration purposes, the intensity frame in Fig. 12a

shows the patch corresponding to the considered events

(yellow rectangle). However, such an intensity frame is not

used in our framework.

Without using polarity, Figs. 12b and 12c show the con-

trast function f (θ) and images of warped events (8) for

three candidate point trajectories, specified by the three

optical flow vectors θ i, i = 0,1,2, that are displayed in

Fig. 12a. Conversely, Figs. 12d and 12e show the corre-

sponding elements if event polarity is used. The image

patches of warped events are color coded from blue (low)

to red (high). If polarity is not used (Fig. 12b), blue means

absence of events (small values of (8)), whereas red indi-

cates large accumulation of events (large values of (8)). If

polarity is used (Fig. 12e), green means absence of events,

whereas red and blue indicate large accumulation of posi-

tive and negative events, respectively, according to (7).

As it can be observed by comparing Figs. 12c and 12d,

both objective functions provide approximately the same

optimal velocity (peak of the objective function) θ ≡ v ≈
(−40,0) pixel/s. However, the basin of attraction of the

optimal value is slightly narrower and more pronounced if

polarity is used than if it is not taken into account, as can be

noted since Figs. 12c and 12d are displayed using the same

color range. This can be explained by comparing the image

patches of warped events in Figs. 12b and 12e. In case of

thin edge structures like the ones in the considered patch, if

events are warped so that nearby edges overlap, and there-

fore their opposite event polarities cancel, then the contrast

function f (θ) greatly decreases (thus reducing the width of

the contrast peak, i.e., its basin of attraction). Conversely, if

event polarity is not used, the alignment of nearby edges

does not produce cancellation, and therefore the contrast

decreases more slowly, due to the warped edges becoming

further apart.

7. Depth Estimation

To illustrate how depth estimation improves as more

events are processed, we carried out an experiment with

the slider depth sequence from the dataset [1]. We re-

constructed the scene with the same steps as those used for

Fig. 7 in the paper, but varying the number of events pro-

cessed, Ne, between 20000 and 1 million. The results are

displayed in Fig. 13. As it can be seen, as more events are

processed (corresponding to a larger camera baseline), the

reconstructed point cloud becomes more accurate and less

noisy. This effect is also visible in the semi-dense depth

maps overlaid on the grayscale frame of the reference view.
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(a) Intensity frame showing the patch corresponding to the considered events

(yellow rectangle) and three candidate velocities (optical flow): θ 0 (red arrow),

θ 1 (blue arrow) and θ 2 (green arrow).

θ 0 (wrong)

θ 1 (better)

θ 2 (optimal)

(b) Warped events

H(x;θ), for {θ i}
2
i=0

in Fig. 12c.
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(c) Contrast function f (θ) for H in (8). For illus-

tration, we show in Fig. 12b the images of warped

events (8) corresponding to the three candidate ve-

locities in Fig. 12a.
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(d) Contrast function f (θ) for H in (7). For illus-

tration, we show in Fig. 12e the images of warped

events (7) corresponding to the three candidate ve-

locities in Fig. 12a.

θ 0 (wrong)

θ 1 (better)

θ 2 (optimal)

(e) Warped events

H(x;θ), for {θ i}
2
i=0

in Fig. 12d.

Figure 12: Optical Flow (patch-based) estimation. Comparison of objective functions and images of warped events using

event polarity (Figs. 12e and 12d) or not using it (Figs. 12b and 12c). In either case, the optical flow is estimated by finding

the maximizer of the contrast f (θ).

8. Rotational Motion Estimation

A comparison between the types of warped event images

H obtained depending on whether they store the event count

(bk = 1) or the balance of polarities (bk = pk) is shown in

Fig. 14.

In the top row of Fig. 14, polarity is not used. For vi-

sualization purposes, event images in this row (Figs. 14a

and 14b) are displayed in negative form (bright means lack

of events and dark means abundance of events)1. As it is

observed, per-pixel event accumulation (Fig. 14a) produces

a motion-blurred image since events are triggered by mov-

ing edges. Contrarily, the image of warped events using the

estimated motion parameters (Fig. 14b) presents a higher

contrast and sharpness than the image in Fig. 14a, which in-

dicates a better alignment of the events along the candidate

1Figs. 14a and 14b are the same type of images as in Fig. 12b, but with

a different color scheme: from white to black instead of from blue to read.



(a) Ne = 20000events (b) Ne = 100000events (c) Ne = 1000000events

Baseline: 1.9 cm Baseline: 9.5 cm Baseline: 85 cm

Time span: 0.06 s. Time span: 0.33 s. Time span: 2.93 s.

Figure 13: Depth Estimation for different subsets of events, with increasing time span and baseline. Top row: depth map

overlaid on grayscale frame. Bottom row: 3D reconstruction (point cloud). Depth is color-coded, from red (close) to blue

(far), in the range of 0.45 m to 2.4 m.

point trajectories on the image plane. The effect of having

a higher contrast can also be noticed by comparing the dis-

tribution of values (i.e., histogram) of the images of warped

events, as shown in Fig. 14c. The image with larger con-

trast (Fig. 14b) has a larger range of values than the image

with lower contrast (i.e., darker pixels and larger amount of

dark pixels in Fig. 14b with respect to Fig. 14a), and, since

the range of values is non-negative and with a peak at zero,

this means that the mass distribution of values shifts toward

larger (positive) numbers as the contrast increases (i.e., the

red curve in Fig. 14c becomes the blue curve as contrast

increases).

The previous observations are also applicable to the

second row of Fig. 14, where event polarity is used (cf.

Figs. 14d and 14e). The average gray level corresponds to

pixels where no events were generated; dark regions corre-

spond to negative events, and bright regions correspond to

positive events. Indeed, the image of warped events H ob-

tained with the optimal parameters (Fig. 14e) has a larger

contrast than the one with per-pixel polarity accumulation

(Fig. 14d). The larger contrast of Fig. 14e over Fig. 14d is

evidenced by the larger range of values and larger amount

of brighter and darker pixels, as reported in the comparison

of the distributions (Fig. 14f) of pixel values in both images.

We quantified the effect of using or not using the event

polarity for rotational motion estimation on sequences from

the dataset [1]. Each sequence has a 1 minute length and

contains about 100-200 million events. Ground truth cam-

era motion is provided by a sub-millimeter motion capture

system. Each rotational motion sequence starts with rota-

tions around each camera axis, and then is followed by ro-

tations in all 3-DOFs. In addition, the speed of the mo-

tion increases as the sequence progresses. Fig. 15 shows

the comparison of the results of our framework, not us-

ing event polarity (bk = 1), against ground truth on the

poster rotation sequence. The curves corresponding to



the 3-DOFs of the event camera on the entire sequence are

shown in Fig. 15a. This plot shows the increasing speed

of the motion, with excitations close to ±1000 ◦/s. Fig-

ures 15b and 15c are zoomed-in versions of Fig. 15a, with

rotations dominantly around each axis of the event camera

(Fig. 15b) or in arbitrary axes (Fig. 15c), respectively. Our

framework provides very accurate results, as highlighted by

the very small errors: the lines of our method and those of

the ground truth are almost indistinguishable at this scale.

These errors are better noticed in the boxplots of Fig 16a,

where errors are reported in sub-intervals of 15 s, in accor-

dance with the increasing speed of the motion in the se-

quence. Fig. 16b reports the boxplot errors in case of using

the event polarity (bk = pk) to build the image of warped

events. As it can be observed by comparing both boxplots

(Figs. 16a and 16b), using event polarity does not signif-

icantly change the results in this scenario. We measured

Root Mean Square (RMS) angular velocity errors over the

entire sequence of: 25.96 ◦/s (without using polarity) and

24.39 ◦/s (using polarity). Both are relatively small, com-

pared to the peak velocities close to 1000 ◦/s, i.e., in the

order of 2.5 % error.

References

[1] Elias Mueggler, Henri Rebecq, Guillermo Gallego, Tobi Del-

bruck, and Davide Scaramuzza. The event-camera dataset and

simulator: Event-based data for pose estimation, visual odom-

etry, and SLAM. Int. J. Robot. Research, 36:142–149, 2017.

1, 3, 5, 6



(a) Warped events for angular velocity θ = 0 (i.e.,

no motion correction). Using bk = 1 in the image of

warped events H.

(b) Warped events using the estimated angular ve-

locity θ
∗, which produces motion-corrected, sharp

edges.
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(c) Histograms of the negative of the

images in Figs. 14a and 14b. The peak

at zero corresponds to the white pixels.

(d) Warped events angular velocity θ = 0 (i.e., no mo-

tion correction). Using polarity, bk = pk , in the image

of warped events H.

(e) Warped events using the estimated angular ve-

locity θ
∗, which produces motion-corrected, sharp

edges. Using polarity, bk = pk , in H.
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(f) Histograms of Figs. 14d and 14e.

The peak at zero corresponds to the

gray pixels.

Figure 14: Rotational Motion Estimation. Images of warped events, displayed in grayscale to better visualize the motion blur

due to event misalignment and the sharpness due to event alignment. Top: Not using polarity (bk = 1 in the image of warped

events H); bottom: using polarity (bk = pk in H). Sequence dynamic rotation from the dataset [1].
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(a) Whole sequence. Rotational motion with increasing velocity, reaching

speeds close to ±1000◦/s.
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(b) Zoom of Fig. 15a, showing a series of rotations dominantly along one

axis: pan (rotation around Y axis), tilt (rotation around X axis) and roll

(rotation around Z axis).
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(c) Zoom of Fig. 15a, showing rotations in arbitrary directions, with speed

close to 1000 ◦/s.

Figure 15: Rotational Motion Estimation. Comparison of

the estimated angular velocity (solid line) using our frame-

work with bk = 1 (i.e., without event polarity) against

ground truth (dashed line). Sequence poster rotation

in the dataset [1].
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(a) Without polarity
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(b) With polarity

Figure 16: Rotational Motion Estimation. Angular velocity

error (estimated vs. ground truth) for the same sequence,

with or wihout taking into account event polarity in the

image of warped events H. Sequence poster rotation

from the dataset [1].


