Manifold Learning in Quotient Spaces: Supplementary Material

Eloi Mehr!, André Lieutier , Fernando Sanchez Bermudez , Vincent Guitteny , Nicolas Thome', and
Matthieu Cord'

'LIP6, UPMC Sorbonne Universités

1. Mathematical background

In this section, we provide the reader with a short math-
ematical background in relation with our work, which falls
within geometry and topology applied to machine learning.

In order to forget the unneeded information about 3D,
we represent an intrinsic geometry as an element of X/G,
the quotient of the original input space X by the action of
the rotations group. The quotient space X /G is the set of
all the orbits of the group action: X/G = {T |z € X},
where T = {h.x | h € G}, and (h,z) — h.x is the group
action. If (X, T is a topological space, then X /G is natu-
rally equipped with the so-called quotient topology T'x,g =
{U c X/G|q *(U) €T}, where ¢ is the canonical sur-
jection which maps z onto its orbit. When X is a metric
space, proposition 1 makes explicit the quotient topology
in the case where the action is an isometry. Especially, un-
der mild assumptions the quotient loss (Equation (2) in the
paper) also defines a distance in the quotient space X /G.

A Lie group G is a group that is also a differentiable
manifold. More formally it is group with a differentiable
manifold structure such that both group multiplication and
inverse map are differentiable. Since the multiplication by
an element i € G defines a diffeomorphism from G to G
that sends the identity element to h, the local behavior near
the identity reflects the local behavior near any element i €
G. Therefore the tangent space at the identity together with
its linear structure, i.e. the first order behavior of elements
infinitesimally close to the identity, called Lie Algebra, is a
central object in the study of Lie groups. Among the most
common and intuitive Lie groups are rotation groups in n-
dimensional Euclidean space SO(n). In our paper, we use
the Lie structure to parameterize an infinite group with a
finite-dimensional vector h representing the transformation.

2. Implementation details

To discretize an infinite group, we “evenly” pick trans-
formations according to a Riemannian metric. For instance,
we parameterize SO(2) by the rotation angle and evenly

split [0, 27] to get 36 rotations. Depending on the consid-
ered group, it might be better to deal with the infinite group
itself without any discretization, as done in section 5 of the
paper. The sampling in the orbit pooling is theoretically
chosen such that the orbit distribution is invariant by the
group action. To simplify, in section 5 we bounded the de-
formations set to a scaled hypercube of R'° and used a uni-
form distribution.

Our deep architectures are detailed in Figure 1. They
are inspired by [8]. These architectures are the same for
both the QAE and the vanilla autoencoder, except that the
vanilla autoencoder has no orbit pooling while the QAE has
an orbit pooling layer. We use ReLU activation functions
with a slope of 0.2 for the non-linearities, except for the
activation of the last layer which is the hyperbolic tangent
function. We use ADAM optimization with mini-batch size
of 32 samples for the optimization of the networks’ param-
eters.

We experiment the QAE on version 1 of the core
ShapeNet dataset [2], called ShapeNetCore v1. This release
contains 7497 chairs, 6778 cars, and 4045 airplanes.

3. Quotient loss

We prove here that our quotient loss d benefits from nice
properties under weak conditions, fulfilled for instance with
rotations acting on shapes.

Proposition 1. Let (X,d) be a metric space, G a group,
and (h,z) — h.x a group action of G on X. We note T =
{h.x | h € G} the orbit of x. We suppose that the action is
an isometry, that is for every v,y € X, and any h € G,
d(h.xz, h.y) = d(x,y). Then,

d: (Z,7) — grelfgd(h.x,y) (1)

well defines a pseudometric on the quotient space X/G =
{ZT|ze X}

Moreover, if G is a compact space and its action is con-
tinuous, then d is also a metric on X /G.



% :G? E :G'é e} o 19 19 0
=g o | | g 2| | g g g Al | B A VI
0 Yol Yo o ™ =) =] (=} S S > > B
S e s s P P EH EH S 2> & > 2> =
=, = = = = = 3) S S S S S S S
o o o o Q 1 1 1 I I
) >} S >} o 5] :>> :>> :>v % % % % =N
= 2| 2] |2 -
A e 2 2 N 0§ 2 2 S S S SR
"S‘}‘la%: 64> 64716 32216 16232 864 4%x128 | 32 | 32 4%128 &x64 16%32 3216 6416 642
ENCODER DECODER
= e} o e
= e o) o) ) e % % % 2 je 2 '3 k5
o0 [ " R 5 % o) o) o) 2] ) Yo Yo Y3
m i) i) 0 e o) g g g > > > > >
L s P s - P EM® EH S 2> & > 2> =
) g g = = = S 8 S 8 S S 3 3
" S} S} S} <} Q i i T T T
o o o o O o = = = o, o, o, ¥ 2,
= = = =] g = = =
= | |E| |E
v v v v v v v v v v v v v v
(:}1::;: 323 32316 16%x16  83x32  43%x64  23%x128 64 i 64 23x128  4%x64  8%x32  16%16 32%x16 323
latent space
dimension
Figure 1: Description of our 2D and 3D deep convolutional architectures.
Proof. d is well defined on X /G. Indeed, if x; and x5 are and hy € G such that
two representatives of the same orbit x, and similarly y;, y2 -
for 7, then there exists hy, h, € G such that z; = hy.xo d(hs.z,y) < d(Z,7) +€/2. ®)
and y; = hy.y2. So, forany h € G, Thus
d(h-xy,y1) = d(hhy.w2, hy-yo) (2) d(hy.2, hy.2) < d(hy.w,y) + d(ha.z,y)  (9)
_ -1 _ _
= d(hy hhew2,12) 3 <A@y +dEzg) +e. (10)
As h »—> h; 1hhx is a bijection of G, taking the infimum in We also have
Equation (3) gives B
_ _ d(@,7) < d(hy'hyx, 2) = d(hy.x, ha.2) . (11)
éﬂf d(h.l‘l, yl) = ﬁnf d(h.zg, yg) . (4)
g €o Taking the limit as e — 0 concludes the proof of the trian-
Obviously d is non-negative and d(Z,Z) = 0 for any gular inequality. ) ) o
r€G Finally, suppose that G is compact and its action is con-
Let z,y € X. Then, for any h € G, we have tfnuous. Let z,y € G such that d(z,7) = 0. Tl?e appl.lca—
tion h — d(h.z,y) from the compact G to R is continu-
d(h.z,y) = d(x, }fl_y) = d(}fl_% x). (5) ous, so the extreme value theorem implies that there exists

Moreover, h — h~! is a bijection of G, so by taking the
infimum in Equation (5), we get

(7,5) = d(7,7),

=

(6)

so d is symmetric.
Let z,y,z € X, and € > 0. Then there exists h; € G
such that

d(hy.z,y) < d(T,7) +€¢/2 ()

he G such that

inf d(h. =d(h.z,y). 12
gg(%w (h.z,y) (12)
By unicity of the limit we have

d(h.z,y) = 0. (13)

Soh.r = y, which exactly means that T = 7 and concludes
our proof. ]



4. Further work

The extension of the QAE to a variational autoencoder
is straightforward, as it simply adds a regularization term
(and a genuine sampling step during the optimization) to
the regular loss of the autoencoder. It is more challenging to
wonder how to use a quotient framework in a generative ad-
versatial network [4, 10], as generative adversarial networks
do not use an explicit reconstruction error or likelihood.

QAE could be applied to recent multi-resolution vox-
els grids learning methods [6, 9], but we are also interested
in applying our QAE to richer 3D representations, such as
point clouds [, 3] or meshes [5].

Further work could also study the connections between
the QAE and spatial transformer networks [7], although
spatial transformer networks are not able to deal with dis-
crete transformations.
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