
Logo Synthesis and Manipulation with Clustered Generative Adversarial
Networks

Supplementary Material

Alexander Sage
D-ITET, ETH Zurich

Switzerland
sagea@ee.ethz.ch

Eirikur Agustsson
D-ITET, ETH Zurich

Switzerland
aeirikur@vision.ee.ethz.ch

Radu Timofte
D-ITET, ETH Zurich

Merantix GmbH
radu.timofte@vision.ee.ethz.ch

Luc Van Gool
D-ITET, ETH Zurich

ESAT, KU Leuven
vangool@vision.ee.ethz.ch

1. Introduction

This is the supplementary material for our paper Logo
Synthesis and Manipulation with Clustered Generative Ad-
versarial Networks. The most recent version of this docu-
ment can be found at

In Figure 1 we present an example interface of a logo
generator which could be used to facilitate the design pro-
cess of a new logo. The samples used here where generated
by our iWGAN-LC model trained on LLD-logo at 64×64
pixels, clustered to 64 synthetic classes in the feature space
of a ResNet classifier.

In Section 2, we list some additional quantitative re-
sults to back up our claims about image quality and diver-
sity, followed by some details and statistics on the scrap-
ing outcome and final contents of LLD-icon and LLD-logo.
After presenting two additional examples for vector arith-
metic in latent space which could be useful for our logo
application in Section 3, we proceed to show in Section 5,
for each subset of our Large Logo Dataset, an excerpt of
the collected data together with generated samples from se-
lected GAN architectures and the clusters produced by the
applied clustering methods. For CIFAR-10 we also show
samples from our cluster-conditional CIFAR-10 models to-
gether with samples from the unconditional and supervised
iWGAN variants in this section. Finally, we give some de-
tails on architecture and training hyper-parameters of our
models in Section 6, including a larger reproduction of the
our DCGAN architecture illustration in Figure 2.

2. Image quality and diversity scores
In Table 1 we give the CORNIA score as a measure of

image quality for our LLD dataset (as Inception scores are
not applicable) and MS-SSIM scores again to measure im-
age diversity. As previously indicated, the numbers show
that the image quality as well as the diversity both reach the
same level as the original data on the respective dataset.

Method Clusters CORNIA Diversity
score (MS-SSIM)

DCGAN-LC with AE clustering 100 62.12±0.51 0.0475±0.0013
iWGAN-LC with AE clustering 100 60.24±0.61 0.0439±0.0010
*iWGAN 54.27±0.67 0.0488±0.0011
*iWGAN-LC with RC clustering 16 55.37±0.67 0.0490±0.0014
*iWGAN-LC with RC clustering 128 55.27±0.68 0.0484±0.0010

LLD-icon (original data) 61.00±0.62 0.0482±0.0014
*LLD-icon-sharp (original data) 55.37±0.67 0.0494±0.0011

Table 1: CORNIA scores and diversity scores for models
trained on LLD-icon. The starred (*) models where trained
on the subset LLD-icon-sharp where the vast majority of
blurry icons have been removed.

1



Figure 1: Logo generator interface. The user is able to choose either vicinity sampling or class transfer to modify the image
in a chosen semantic direction. For both methods, 8 random variations are arranged around the current logo. Upon selecting
the appropriate sample, the current logo can be modified by a variable amount using the slider at the bottom of the window.
After confirming the selected modification, the process starts over again from the newly modified logo, until the desired
appearance is reached. In addition to vicinity sampling within or across clusters, some pre-defined semantic modifications
can be made using the sliders on the right hand side of the first view. The images used here are generated with iWGAN-LC
trained at 6464 pixels on LLD-logo clustered to 64 different classes.

2048

4
4

8
8

16

16
32

32

64

64

1024
512

256

100

100
100

100

100

512

z (latent space) y (labels, one-hot)
attached to each layer's output

Tensor Y derived from vector y:
Y[j, :, :] = y[i] if i==j, else 0

fract. str. conv.

linear projection
(fully connected)

3

Figure 2: Generator network of the conditional DCGAN for 100 data clusters. The label information y is appended as a
one-hot vector to the latent vector. It is also projected onto a set of feature maps consisting of all zeros except for the map
corresponding to the class number, where all elements have value one. These additional feature maps are then appended to
the output of each convolutional layer. The discriminator network works analog to this one, except that the data is flowing in
the other direction, the fractionally strided convolutions are fully strided and there is only one output (real or fake).



3. Latent space exploration on LLD-logo

In this section, we present some interpolations on the
LLD-logo dataset and perform two additional experiments
with latent space operations.

Interpolation In Figure 3 we present two examples of
interpolations between 4 different samples, representing a
small section of the high-dimensional logo manifold cre-
ated by the GAN.

Vector arithmetic First, we define two desirable opera-
tions we would like to perform: (1) Color shifts from red to
blue and blue to red and (2) Shape changes from square to
round and round to square. For each of these semantic op-
erations we identify a number (for our experiments around
30) of samples that match our criteria. To get operation (1)
this means we select 30 red and 30 blue logos. We then
construct a directional vector by subtracting the mean latent
space vector of all blue logos from the mean latent space
vector of all red logos, which gives us a directional vector
from red to blue. Since some of these semantic attributes
are expected to be encoded in the cluster labels as well, we
can do the same with our one-hot encoded class vectors,

which we can view as an additional cluster space. In Fig-
ure 4 we add this directional vector to a new random batch
of generated logos. If we subtract the directional vector, we
get a shift in the opposite direction, i.e. from blue to red.
To find out how much of the color information is encoded
in the latent representation and in the clusters respectively,
we can perform the operation in only one of these domains.
This is done in Figure 5 for the red-shift, where we observe
a very similar behavior for both spaces, indicating that the
color information is equally encoded in both latent space
and labels.

Our second experiment is performed in the same way,
and the directional vector is applied to the same batch of
samples. Figure 6, again, shows the result for a simultane-
ous addition of both (latent and class) vectors in each di-
rection, whereas each space is considered individually in
Figure 7 for the directional vectors towards round logos.
Here we can observe that some logos respond better to the
change in latent space, while others seem more responsive
to a changing cluster label. Overall, the label information
seems to be a little stronger in this case.

In both experiments, the combined shift clearly performs
best, and could provide a powerful tools for logo manipula-
tion and other applications.



(a) Interpolation between 4 square logos.

(b) Interpolation between logos of different shape.

Figure 3: Four-point interpolation on LLD-logo.



(a) Random Sample, unmodified.

(b) Sample from (a) shifted towards blue logos

(c) Sample from (a) shifted towards red logos

Figure 4: Blue-red shift on a random batch. Directional
vectors are both applied in latent space and in cluster label
space.

(a) Samples from Figure 4a shifted towards red logos only in
latent vector space

(b) Samples from Figure 4a shifted towards red logos only in
label vector space

Figure 5: Blue-red shift on a random batch performed in
either latent representation or cluster labels.



(a) Random Sample, unmodified. (Same as Figure4a)

(b) Samples from Figure 4a shifted towards round logos.

(c) Samples from Figure 4a shifted towards square logos

Figure 6: Round-square shape shift on a random batch. Di-
rectional vectors are both applied in latent space and in clus-
ter label space.

(a) Samples from Figure 6a shifted towards round logos only in
latent vector space

(b) Samples from Figure 6a shifted towards round logos only in
label vector space

Figure 7: Round-square shape shift on a random batch per-
formed in either latent representation or cluster labels.



4. LLD crawling and image statistics
4.1. LLD-icon

When collecting the favicons for LLD-icon, our down-
load script directly converted all icons found to a standard-
ized 32x32 pixel resolution and RGB color space, discard-
ing all non-square images. After acquiring the raw data
from the web, we remove all exact duplicates and perform
a three-stage clean-up process:

1. Sort all images by complexity by evaluating its PNG-
compressed file size

2. Manually inspect and partition the resulting sorted list
into three sections: Clean, mostly clean and mostly un-
wanted data. The last section is discarded, while the
middle part (mostly clean) is further processed in the
next step.

3. Sort the intermediate section according to the number
of white pixels in each image and cut off at a certain
point after inspection, discarding the images contain-
ing the least amount of white pixels.

Table 2 shows statistics on the crawling process, original
image resolutions the icons where rescaled from, and num-
bers on content removed through our clean-up process.

4.2. LLD-logo

During the collection of LLD-logo on twitter, we use a
face detector recognize faces and proceed to the next user in
the search results if a face was detected. At the same time,
we make use of twitters (relatively new) sensitive content
flag to reject such flagged profiles. As the number of re-
jected profiles in Table 3 compared to the number of dis-
carded images during cleanup (of which a substantial num-
ber where due to sensitive content) shows, this flag is only
used very sporadically at this time, and is far from a reli-
able indicator. Figure 8 shows a histogram of image res-
olutions contained in LLD-icon (where no re-scaling was
performed during data collection), with the top-5 image res-
olutions (amounting to 92% of images) given in Table 4.

Figure 8: Histogram of image sizes in LLD-logo. There are
a total of 329 different image resolutions contained in the
dataset.

Failed requests 150, 413
Unreadable files 71, 596
Non-square images 36, 401
Unable to process 6
Total images saved 662, 273

Image re-scaling
Native 32 p 158, 881 24.0%
Scaled up 355, 260 53.6%
Scaled down 148, 132 22.4%

Dataset cleanup
Duplicates removed 114, 063 17.2%
Discarded due to content 61, 833
Clean dataset size 486, 377

Table 2: Crawling statistics for LLD-icon

Flagged content ignored 1, 066
Downloaded images 182, 998
Discarded during cleanup 60, 078
Final dataset size 122, 920

Table 3: Crawling and clean-up statistics for LLD-icon

Image height (px) Number of images % of total

400 98, 824 80.4%
240 8, 625 7.0%
256 2, 498 2.0%
300 2, 143 1.7%
250 1, 502 1.2%

Table 4: The 5 most prominent image resolutions in LLD-
logo, covering 92.3% of the contained images.



5. Logo Data, clusters and generated samples
In this section, we will show a small sample from each

of our introduced datasets and present generated icons from
models trained on said dataset. Additionally, we show the
data clusters produced by our clustering methods.

Since, due to the limited space available, it has not been
featured in the main part of the paper, we start with LLD-
logo. Figure 9 shows a sample of the original data col-
lected (reduced to 64×64 pixels) next to the logos gener-
ated by an iWGAN model trained at 64×64 pixels. Com-
pared to LLD-icon, these logos contain a lot more text and
sometimes more detailed images. Both of these features are
recreated nicely by the model, where the text is often (but
not always) illegible while still of a realistic appearance. We
expect the legibility of the text to be much higher if our data
would not contain a lot of non-latin (e.g. Chinese) charac-
ters. Figure 10 contains the 64 clusters found by clustering
with our RC method, showing very obvious semantic simi-
larities within each cluster. It is not immediately noticeable
that each block is composed of real (top half) and generated
(bottom half) samples, which shows how well the GAN is
able to reproduce the specific distributions inherent in each
cluster.

In a similar way, Figures 11 and 12 present samples from
LLD-icon and LLD-icon-sharp, respectively. Here we com-
pare random samples from different trained models, con-
taining both conditional and unconditional variants. Fig-
ure 13, 14, show the clusters found in LLD-icon by cluster-
ing in the latent space of an Autoencoder, while Figures 15
and 16 show clusters in LLD-icon-sharp from the feature-
space of a ResNet classifier. A very noticeable difference
originates from the fact that the Autoencoder was trained on
gray-scale images and is thus relatively color-independent,
while there are some very apparent single-color clusters in
the RC-version, mostly containing green, blue or orange/red
logos.

Finally, in Figure 17, we present some samples from
our benchmarked CIFAR-10 Generators, together with the
achieved inception score. Figures 18 and 19 compare the
clusters found using our RC method with the original data
labels, with noticeably more visually uniform classes using
our synthetic labeling technique.



(a) Original data

(b) iWGAN-LC with 64 RC clusters

Figure 9: Random samples from LLD-logo data and trained iWGAN model using 64 RC clusters and a 64×64 pixel output
resolution.



Figure 10: All 64 clusters of LLD-logo clustered with a ResNet classifier for 64 cluster centers. The top half of each block
contains 9 random samples of original images from the cluster, while the bottom half contains 9 random samples from the
iWGAN-LC Generator trained at 64×64 pixels. Best viewed as PDF at 400% magnification.



(a) Original data

(b) DCGAN-LC with 100 AE clusters

(c) iWGAN-LC with 100 AE clusters

(d) iWGAN-LC with 128 RC Clusters

Figure 11: Random samples from LLD-icon and generative models trained on this data.



(a) Original data

(b) Unconditional iWGAN

(c) iWGAN with 16 RC clusters

(d) iWGAN with 128 RC Clusters

Figure 12: Random samples from LLD-icon-sharp and generative models trained on this data.



Figure 13: Clusters 1-70 of LLD-icon clustered in the latent space of an Autoencoder with 100 cluster centers. The top half of
each block contains 9 random samples of original images from the cluster, while the bottom half contains 9 random samples
from the DCGAN-LC Generator.



Figure 14: Clusters 71-128 of LLD-icon clustered in the latent space of an Autoencoder with 100 cluster centers. The top
half of each block contains 9 random samples of original images from the cluster, while the bottom half contains 9 random
samples from the DCGAN-LC Generator.



Figure 15: Clusters 71-100 of LLD-icon clustered in the latent space of an Autoencoder with 100 cluster centers. The top
half of each block contains 9 random samples of original images from the cluster, while the bottom half contains 9 random
samples from the DCGAN-LC Generator.



Figure 16: Clusters 71-128 of LLD-icon-sharp clustered with a ResNet Classifier and 128 cluster centers. The top half of
each block contains 9 random samples of original images from the cluster, while the bottom half contains 9 random samples
from the iWGAN-LC Generator.



(a) iWgan unconditional. Inception score: 7.85 (b) iWGAN-AC with 32 RC clusters. Inception score: 8.67

(c) iWGAN-AC with original labels. Inception score: 8.35 (d) iWGAN-LC with 32 RC clusters. Inception score: 7.83

Figure 17: Random samples from different iWGAN models trained on CIFAR-10 data.



(a) Original data labels (10 categories)

(b) Clustering in Autoencoder space with 32 cluster centers

Figure 18: Original labels and 32 AE clusters. Note the strong variability in visual appearance within the semantic classes,
pointing to a possible advantage of using a clustering more in-line with visual semantics. Our experiments with AE clustering
produced clearly inferior results on the CIFAR-10 dataset (as compared to our own LLD data).



(a) Clustering in the CNN feature space of a ResNet classifier with 10 cluster centers

(b) Clustering in the CNN feature space of a ResNet classifier with 32 cluster centers

Figure 19: Resulting clusters using RC clustering with 10 and 32 cluster centers. Compared to the original labels in Figure 18,
the 10 clusters shown here are more uniform in visual appearance, however increasing the number of clusters to 32 gives
each of them an even more visually consistent appearance.



6. Architecture Details
In this section we specify the exact architectures and

hyper-parameters used to train our models.

iWGAN for 32×32-pixel output We use the residual net-
work architecture designed for CIFAR-10 described in [4]
(Appendix C) for this model. For iWGAN-LC, each stage
has an input shape of [128 + k, ...] where k is the num-
ber of classes, i.e. the number of cluster centers used in
our clustering approach. All training hyper-parameters re-
main untouched and we never use normalization in the Dis-
criminator as this resulted in consistently superior Incep-
tion scores in our CIFAR-10 experiments. We use the ex-
act same model and training parameters with our LLD-icon
dataset.

iWGAN for 64x64-pixel output For LLD-logo at 64×64
pixels again the official TensorFlow implementation by
Gulrajani et al. [4]1. Again, the input for each stage is ex-
tended to have a shape of [N +k, ...] where N is the size in
the original model and k is the number of classes. The only
change we made here is to only use 100, 000 iterations and
linearly decay the learning rate over these iterations.

DCGAN For DCGAN, we deviate from some hyperpa-
rameters used in Taehoon Kim’s TensorFlow implementa-
tion 2, namely:

• Higher number of feature maps: (128+k, 256+k,
512+k, 1024+k) for the Discriminator layers and
(256+k, 512+k, 1034+k, 2048+k) for the Generator
layers, with k again being the number of classes in the
LC version.

• For each training iteration of the Discriminator, we
train the Generator 3 times

• Reduced learning rate of 0.0004 (default: 0.002)

• Higher latent space dimensionality of 512 components
(default: 100)

• Blur input images to Discriminator as detailed in Sec-
tion 3.3 of our paper.

1https://github.com/igul222/improved_wgan_
training

2https://github.com/carpedm20/DCGAN-tensorflow

https://github.com/igul222/improved_wgan_training
https://github.com/igul222/improved_wgan_training
https://github.com/carpedm20/DCGAN-tensorflow


References
[1] F. Bordes, S. Honari, and P. Vincent. Learning to generate

samples from noise through infusion training. arXiv preprint
arXiv:1703.06975, 2017.

[2] Z. Dai, A. Almahairi, P. Bachman, E. Hovy, and A. Courville.
Calibrating energy-based generative adversarial networks.
arXiv preprint arXiv:1702.01691, 2017.

[3] V. Dumoulin, I. Belghazi, B. Poole, A. Lamb, M. Arjovsky,
O. Mastropietro, and A. Courville. Adversarially learned in-
ference. arXiv preprint arXiv:1606.00704, 2016.

[4] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and
A. Courville. Improved training of wasserstein gans. arXiv
preprint arXiv:1704.00028, 2017. 20

[5] X. Huang, Y. Li, O. Poursaeed, J. Hopcroft, and S. Be-
longie. Stacked generative adversarial networks. arXiv
preprint arXiv:1612.04357, 2016.

[6] A. Odena, C. Olah, and J. Shlens. Conditional image synthesis
with auxiliary classifier gans. 2017.

[7] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Rad-
ford, and X. Chen. Improved techniques for training gans.
In Advances in Neural Information Processing Systems, pages
2234–2242, 2016.

[8] D. Warde-Farley and Y. Bengio. Improving generative adver-
sarial networks with denoising feature matching. In Interna-
tional Conference on Learning Representations, 2017.


