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1. RNN-Based Models
Given the recurrent definition of P-frames, one can use

a RNN to model a compressed video. In preliminary
experiments, we experiment with a variant using Conv-
LSTMs [4].

The architecture is identical to CoViAR except that i) it
uses the original T and ∆ instead of the accumulated D
and R, because here we want to the original dependency,
and ii) it uses a Conv-LSTM to aggregate the CNN fea-
tures instead of average pooling. Formally, let x(t)

fusion :=

max
(
x
(t)
motion, x

(t)
residual

)
denote the max-pooled P-frame

feature at time t. The Conv-LSTM takes the input sequence(
x
(0)
RGB, x

(1)
fusion, x

(2)
fusion, . . .

)
.

Here the number of channels of x(0)
RGB is reduced from 2048

to 512 by an 1 × 1 convolution so that its dimensionality
matches x(t)

fusion. We use 512-dimensional hidden states and
3 × 3 kernels for the Conv-LSTM. Due to memory con-
straint, we subsample one every two P-frames to reduce the
sequence length.

Table 1 presents the results. Even though the Conv-
LSTM model outperforms traditional RGB-based methods,
the decoupled CoViAR achieves the best performance. We
also try adding the input of Conv-LSTM to its output as a
skip connection, but it leads to worse performance (Conv-
LSTM-Skip).

RGB-only Conv-LSTM Conv-LSTM-Skip CoViAR

88.4 89.1 87.8 90.8

Table 1: Accuracy on UCF-101 split 1. CoViAR decouples
the long dependency and outperforms RNN-based models.

2. Feature Fusion

We experiment with different ways of combining P-
frame features, x

(t)
motion, x

(t)
residual, and I-frame features

x
(0)
RGB. In particular, we evaluate maximum, mean, and mul-

tiplicative fusion, concatenation of feature maps, and late
fusion (summing softmax scores). For maximum, mean,
and multiplicative fusion, we perform 1× 1 convolution on
I-frame feature maps before fusion, so that their dimension-
ality matches P-frame features.

Table 2 summarizes the results; we found late fusion
works the best for CoViAR. Note that late fusion allows
training of a decoupled model, while the rest requires train-
ing multiple CNNs jointly. The ease of training of late fu-
sion may also contribute to its superior performance.

Max Mean Mult Concat Late

87.9 88.1 87.8 89.7 90.8

Table 2: Accuracy on UCF-101 split 1 with different feature
fusion methods.

3. CoViAR without Temporal Segments

For further analysis, we also evaluate CoViAR with-
out using temporal segments [3] (Table 3). It still signifi-
cantly outperforms models using RGB images only, includ-
ing ResNet-152 (83.4% in ST-Mult [1]; 84.7% with out im-
plementation) and Res3D [2] (85.8%).

I M R I+M I+R I+M+R

84.7 63.4 76.6 87.9 87.2 88.9
Table 3: Accuracy of CoViAR without temporal segments
on UFC-101 split 1.



4. Confusion Matrix
Figure 1 and Figure 2 show the confusion matrices of

CoViAR and the model using only RGB images respec-
tively, on UCF-101. Figure 3 shows the difference between
their predictions. We can see that CoViAR corrects many
mistakes made by the RGB-based model (off-diagonal pur-
ple blocks in Figure 3). For example, while the RGB-based
model gets confused about the similar actions of Cricket
Bowling and Cricket Shot, our model better distinguishes
between them.
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Figure 1: Confusion matrix of CoViAR on UCF-101.
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Figure 2: Confusion matrix of the model using RGB images on UCF-101.
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Figure 3: Difference between CoViAR’s predictions and the RGB-based model’s predictions. For diagonal entries, posi-
tive values (in green) is better (increase of correct predictions). For off-diagonal entries, negative values (purple) is better
(reduction of wrong predictions).


