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In this Supplementary Material, we provide details omit-
ted in the main paper:

• Section 1: Implementation details (Section 4.2 of the
main paper).

• Section 2: uPMC Vs. Triplet-based Methods (Section
4.2 of the main paper).

• Section 3: Effects of incorporating semantic knowl-
edge in weighted likelihood (Section 4.4 of the main
paper).

• Section 4: Analysis with seen/unseen answers (Section
4.5 of the main paper).

• Section 5: Visualization of answer embeddings (Sec-
tion 4.5 of the main paper).

• Section 6: Analysis on answer embeddings.

1. Implementation Details
In this section, we provide more details about the ar-

chitectures of the stacked attention network (SAN) [5, 12]
and the multi-layer perceptron (MLP) used for fθ(i, q) and
gφ(a) in the main paper (section 4.2).

MLP as fθ(i, q) and gφ(a) As mentioned in the main
paper, a one-hidden-layer MLP (with the hidden dimension
of 4,096 and output dimension of 1,024) is used for both
fθ(i, q) and gφ(a). The question q or answer a is repre-
sented by the average of word embeddings. Concretely, we
compute the average of the pre-trained GloVe [8] vectors
of words in question or answer. We then input this ques-
tion vector (concatenated with the visual feature) or answer
vector to the specified MLP, for obtaining output embed-
ding. To enable better generalization on unseen answers
and across datasets, we keep the average GloVe word em-
beddings for answer fixed in all our experiments. For the
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Figure 1. The multilayer perceptron (MLP) as gφ(a). The aver-
age of transformed word embeddings is first projected to the hid-
den space through a ReLU activation and then mapped to the em-
bedding space. Dropout (p=0.5) is used for regularization. The
same architecture is used for fθ(i, q), except the input dimension
is 2,348.

word embedding on questions, we fine-tune it as this leads
to better empirical results. To represent the image feature
i, we extract the activations from the last convolution layer
of a 152-layer ResNet [2] pre-trained on ImageNet [9], and
average them over the spatial extent to obtain a 2,048 di-
mensional feature vector.

The architecture of the one-hidden-layer MLP for com-
puting answer embedding is illustrated in Fig. 1. The input
is first mapped into the hidden space of 4,096 dimensions
and then projected to a 1,024 dimensional embedding space.
To reduce the number of parameters introduced in the MLP,
we follow a similar practice suggested in [11] and apply a
group-wise inner product to sparsify the weights. For both
fθ(i, q) and gφ(a), the output of MLP is scaled up by a
factor 10.

According to our ablation study in Section 3, we set α
(cf. eq. (2) in the main text) to be multi-hot for VQA2, and
use one-hot as α for all the other datasets.

SAN as fθ(i, q) Details about the stacked attention net-
work (SAN) is shown in Fig. 2. To represent a question,
a single layer bidirectional LSTM (bi-LSTM) with the hid-
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Figure 2. The stacked attention network (SAN) as fθ(i, q). We follow the similar architecture as in [5] to obtain the visual semantic
embedding of images and questions.

den dimension of 512 is used on top of the question GloVe
word embeddings. Similarly to MLP setting, we fine-tune
the question word embedding. At the same time, for im-
age feature i, we extract the output of the last convolution
layer from a 152-layer ResNet and obtain a feature tensor
of dimensionality 14 × 14 × 2048, as suggested in [5]. A
stacked attention module [12] with two glimpses is then
used to obtain the question attended visual features, using
both the outputs of question LSTM and ResNet-152 spa-
tial visual feature. Next, a one-hidden-layer MLP (same
architecture as previously mentioned) is used to embed the
concatenated feature of questions and attended images into
a 1,024-dimensional embedding space. Again, the output of
the MLP is scaled up by a factor 10.

For our best performing model fPMC(SAN?), we used
the SAN as fθ(i, q) and a two-layer bi-LSTM as answer
embedding function gφ(a), with dimensionality of 512. For
this bi-LSTM, we set the drop out rate to be 0.5 between
the first and second LSTMs. We perform max fusion on the
hidden states to obtain the holistic answer feature over the
answer sentence. Both the output of fθ(i, q) and gφ(a) are
then scaled up by a factor of 10 and next used to produce
the score through inner product for the (in, qn, Cn) triplet.

Configuration for competing methods For our clas-
sification model baseline (CLS), we use the same
LSTM+SAN+MLP architecture as above, except that the
output dimension is the total number of top-frequency an-
swers. For the un-factorized PMC (uPMC), we concate-
nate the answer feature together with image and question
features from SAN+LSTM and then input into a one-layer
MLP with hidden dimensionality of 4096. It is then used to
produce a singleton score for the input triplet.

Optimization Details For all above methods, we train for
50 epochs on each dataset using Adam [6] optimization with
initial learning rate of 0.001. We follows the same learning
rate decay strategy suggested in [5], which gives as follows:

lt = 0.5
t

tdecay · l0 (1)

Here, lt denotes the learning rate at epoch t, l0 is the ini-
tial learning rate. tdecay represents the preset decay sched-
ule, which is 15 in all our experiments. For fPMC we set the
Ao to be 3000 across all experiments; for uPMC, due to its
large consumption of memory and computation inefficiency
during training, we set the Ao to be 300 for all settings (this
is the largest feasible size of Ao for uPMC(SAN) with rea-
sonable computation and memory consumption).

2. uPMC Vs. Triplet-based Methods

We follow the exact multiple-choice (MC) setting of [1,
4] to train MLP (with the (i, q, a) triplet as input) on Vi-
sual7W. While getting good results on Visual7W (65.7%),
its transfer performance suffers (13.6% to VQA2 and 30.2%
to qaVG). This is because in training, [1, 4] only differenti-
ates between the correct answer and a few negative answers,
not the entire universe of possible answers. Meanwhile,
training the binary scoring function in [1, 4] requires to
carefully control the calibration between positive and nega-
tives, which made it challenging when the number of nega-
tive answers scales up.

Therefore, we adapt their model to also utilize our PMC
framework for training (i.e., uPMC(MLP)), which opti-
mize stochastic multi-class cross-entropy with negative an-
swers sampling. The transfer performance improves by a
large margin. (Visual7W→qaVG: improving from 30.2%
to 48.4%.)

Table 1. Detailed analysis of different α(a, d) for weighted likeli-
hood. The reported number is the accuracy on VQA2 (validation).

Method Weighting Criterion Acc.

fPMC(SAN)
one-hot 58.0

multi-hot 60.0
WUPS 57.8



Table 2. Analysis of cross dataset performance over Seen/Unseen answers using either CLS or PMC for Visual QA
Visual7W

CLS(SAN) uPMC(SAN) fPMC(SAN) fPMC(SAN?)
S U All S U All S U All S U All

VQA2 59.8 25.0 45.8 57.4 54.6 56.8 60.7 58.5 60.2 61.7 59.4 62.5
qaVG 63.4 25.0 58.9 66.7 45.3 66.0 69.1 47.7 68.4 70.2 46.9 69.5

3. Semantic Knowledge in Weighted Likeli-
hood

As mentioned in section 4.4 of the main paper, we report
in Table 1 the ablation study on using different weight func-
tion α(a, d) in the weighted likelihood formulation (cf. Eq.
(2) of the main paper). We compare three different types of
α(a, d) on VQA2:

• one-hot: Denote tn as the dominant answer in Cn. We
set Cn ← {tn} (i.e., now Cn becomes a singleton) and
apply

α(a, d) = I[a = d] (cf. Eq. (3) of the main paper).

In this case, only one answer is considered positive to
a (i, q) pair. No extra semantic relationship is encoded.

• multi-hot: We keep the given Cn (the ten user annota-
tions collected by VQA2; i.e. |Cn| = 10) and apply

α(a, d) = I[a = d] (cf. Eq. (3) of the main paper)

to obtain a multi-hot vector
∑

a∈Cn
α(a, d) for soft

weighting, leading to a loss similar to [5, 3].

• WUPS: We again consider Cn ← {tn}, but utilize the
WUPS score [10, 7] (the range is [0, 1]) together with
Eq. (6) of the main paper to define α(a, d). We set
λ = 0.9 and give d which has WUPS(a, d) = 1 a
larger weight (i.e., 8).

The results suggest that the multi-hot vector computed
from multiple user annotations provides the best semantic
knowledge among answers for learning the model.

4. Analysis with Seen/Unseen Answers
Next, we present an analysis on transfer learning results,

comparing the performance of methods over seen and un-
seen answer sets. Specifically, we study the transfer learn-
ing result from VQA2 and qaVG to Visual7W. Here, seen
(S) refers to those multiple choices where at least one can-
didate answer is seen in the training vocabulary, and unseen
(U) refers to those multiple choices where all the candidate
answers are not observed in the training vocabulary. As
shown in Table 2, we see that our fPMC model performs
better than the CLS model on both seen and unseen an-
swer set. While CLS model obtains random performance

(the random chance is 25 %) on the unseen answer set, our
fPMC model achieved at least 20% (in absolute value) bet-
ter performance. In general. uPMC is also working well
comparing to CLS. This performance improvement is gain
mostly by taking answer semantics from the word vectors
into account.

5. Visualization on Answer Embeddings
As promised in the main text, we provide the t-SNE vi-

sualization of the answer embedding. To better demonstrate
the effectiveness of learning answer embedding, we re-train
the answer embedding model with randomly initialized an-
swer vectors. We provide visualization on both the ini-
tial answer embedding and learned answer embedding, to
reflect the preservation of semantics and syntactics in the
learned embedding.

According to Fig. 3, we can observe that a clear struc-
ture in the answer embedding are obtain in our learned em-
bedding. While the random initialization of the embedding
remains chaos, our learned embedding successfully provide
both semantic and syntactic similarities between answers.
For example, semantically similar answers such as “air-
plane” and “motorcycle” are close to each other, and syn-
tactically similar answers like “in an office” and “on the
porch” are close. Besides, we also observe that answers
are clustered according to its majority question type, which
meets our expectation for the answer embedding’s structure.
Here we take majority because one answer can be used for
multiple questions of different types.

6. Analysis on Answer Embeddings

Table 3. Results for the baseline method that fix answer embedding
as GloVe. (We show results with SAN as fθ(i, q)).

Target VQA2 Visual7W qaVG
Source Fixed Learning Fixed Learning Fixed Learning
VQA2 57.5 60.0 47.5 60.2 37.6 54.8

Finally, we provide results for an additional baseline al-
gorithm where fθ(i, q) directly maps to the fixed space
of average GloVe answer representations. Here we need
to keep the GloVe embedding fixed to enable transferabil-
ity. Table 3 shows the results on the VQA2 dataset. We
compare its performance to our approach of learning an-
swer embedding with MLP as gφ(a) in terms of both in-
domain and transfer learning performance—learning an-



(a) Random initialized answer embedding

(b) Learned answer embedding
Figure 3. t-SNE visualization. We randomly select 1000 answers from Visual7W and visualize them in the initial answer embedding and
learned answer embeddings. Each answer is marked with different colors according to their question types. (e.g. when, how, who, where,
why, what). To make the figure clear for reading, we randomly sub-sampled the text among those 1000 answers to visualize.



swer embeddings outperforms this simple baseline in all
cases. Associated with the previous visualization results,
we can conclude that learning answer embedding can ef-
fectively capture the semantic relationship between answers
and image-question pairs while obtaining superior perfor-
mance on both within-domain performance and transfer
learning performance.
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