
Creating Capsule Wardrobes from Fashion Images
(Supplemental Material)

Wei-Lin Hsiao
UT-Austin

kimhsiao@cs.utexas.edu

Kristen Grauman
UT-Austin

grauman@cs.utexas.edu

This document consists of:

– Proof of Claim 3.2 in Section 3.1.2 of the main paper

– Implementation details for iterative-greedy algorithm.

– Computation complexity of naive and iterative greedy
algorithm in Section 3.1.2 of the main paper

– Vocabulary for predicted attributes in Section 3.3 of
the main paper

– Examples of false negative generated by randomly
swapping pieces in Section 4.1 of the main paper

– Qualitative example images for most and least compat-
ible outfits scored by baseline methods in Section 4.2
of the main paper

– Qualitative example images for personalized capsules
obtained by nearest-neighbor baseline.

– Interface for human subject study in Section 4.2 of the
main paper

1. Submodularity for objective function
Claim 3.2 When fixing all other layers (i.e., upper, lower,
outer) and selecting a subset of pieces one layer at a time,
the probabilistic versatility coverage function in Eqn (3) is
submodular, and the compatibility function in Eqn (2) is
modular.

Proof. LetAj be candidate pieces from each layer j, where
j = {0, 1, . . . ,m− 1}, and D, B be any set such that D ⊆

B, D =
m−1∏
j=0

AD
j , B =

m−1∏
j=0

AB
j , where AD

j ⊆ Aj , AB
j ⊆

Aj ,∀j. Since D ⊆ B, AD
j ⊆ AB

j ,∀j.
Given a layer i, let si ∈ Ai \ AB

i be the piece ad-
ditionally included. Outfits introduced by including si

to B and D will be O =
{
si ×

∏
j 6=iA

B
j

}
and K ={

si ×
∏

j 6=iA
D
j

}
, respectively. Since AD

j ⊆ AB
j , K ⊆ O.

I Given a layer i, and fixing all other layers, versatility
is submodular.

vB∪O(zi)− vB(zi) = 1−
∏

oj∈B∪O
(1− P (zi|oj))

−
(
1−

∏
oj∈B

(1− P (zi|oj))
)

=
∏

oj∈B
(1− P (zi|oj))−

∏
oj∈B∪O

(1− P (zi|oj))

=
∏

oj∈B
(1− P (zi|oj))

(
1−

∏
oj∈O

(1− P (zi|oj))
)

Because P (zi|oj) is defined as a probability, it is in the
range [0, 1], and therefore (1 − P (zi|oj)) ∈ [0, 1],∀j.
Since D ⊆ B, we have that

∏
oj∈B(1 − P (zi|oj)) ≤∏

oj∈D(1− P (zi|oj)). Thus,

∏
oj∈B

(1− P (zi|oj))
(
1−

∏
oj∈O

(1− P (zi|oj))
)

≤
∏

oj∈D
(1− P (zi|oj))

(
1−

∏
oj∈O

(1− P (zi|oj))
)

=
∏

oj∈D
(1− P (zi|oj))

(
1−

∏
oj∈K

(1− P (zi|oj))
∏

oj∈O\K

(1− P (zi|oj))
)

When O \K = ∅,

vB∪O(zi)− vB(zi)

≤
∏

oj∈D
(1− P (zi|oj))

(
1−

∏
oj∈K

(1− P (zi|oj))
∏

oj∈O\K

(1− P (zi|oj))
)

=
∏

oj∈D
(1− P (zi|oj))

(
1−

∏
oj∈K

(1− P (zi|oj))
)

=
∏

oj∈D
(1− P (zi|oj))−

∏
oj∈D∪K

(1− P (zi|oj))

= vD∪K(zi)− vD(zi)

Since K ⊆ O, when O \ K = ∅, O = K,
i.e.

{
si ×

∏
j 6=iA

B
j

}
=

{
si ×

∏
j 6=iA

D
j

}
, and thus

AB
j = AD

j ,∀j 6= i. Submodularity is closed under

1

nonnegative linear combination, and user’s personal-
ized preference for each style i wi ≥ 0, thus V (y) and
V ′(y) are both submodular when given a layer i and
fixing all other layers.

I Given a layer i, and fixing all other layers, compatibil-
ity is modular.
Since si ∈ Ai \ AB

i ,
{
si ×

∏
j 6=iA

B
j

}
∩{

AB
i ×

∏
j 6=iA

B
j

}
= ∅, i.e. O ∩ B = ∅, and same

with D ∩K = ∅.
By O ∩B = ∅, we get
C(B ∪O)− C(B) =

∑
oj∈B∪O

c(oj)−
∑
oj∈B

c(oj)

=
∑
oj∈B

c(oj) +
∑
oj∈O

c(oj)−
∑
oj∈B

c(oj)

=
∑
oj∈O

c(oj)

and C(D ∪K)− C(K) =
∑

oj∈K
c(oj).

By K ⊆ O, we have∑
oj∈O

c(oj) =
∑

oj∈K
c(oj) +

∑
oj∈O\K

c(oj)

When O \K = ∅,
C(B ∪O)− C(B) =

∑
oj∈O

c(oj)

=
∑

oj∈K
c(oj) +

∑
oj∈O\K

c(oj)

=
∑

oj∈K
c(oj) = C(D ∪K)− C(K)

Thus C(y) is modular when given layer i and fixing
all other layers.

2. Implementation details for iterative-greedy
algorithm

We set our tolerance degree ε = 0.5, and find that our
iterative-greedy algorithm typically converges after 5 iter-
ations. We use Gibbs sampling [2] for compatibility in-
ference. Due to the sampling process, p(θ, z|oj ,µ,Σ, β)
fluctuates slightly at different run times. To increase robust-
ness, we further apply a step function on our compatibility
score c(oj), so that c(oj) ≥ ε is mapped to 1, and otherwise
to 0. We fix ε = −4.69, as validated in the compatibility
experiment to give the best precision-recall trade-off.

3. Computation complexity for niave and
greedy algorithms

Both the naive greedy and iterative greedy algorithms
have a computation bottleneck when computing the objec-
tive obj(yt). Its complexity is decided by Ni times |yt|,

the size of the incrementally growing subset yt at iteration
t. In the following we show the algorithms of naive and it-
erative greedy, and analyze their |yt| respectively. Without
loss of generality, we assume our algorithms are provided
with an initial piece for each layer i.

Naive greedy algorithm for submodular maximization,
where obj(y) := C(y) + V (y).

for each time step t = 1, 2, ...T do

yt−1 =
m−1∏
i=0

Ai(t−1)

for each layer i = 0, 1, ...m− 1 do
sti := argmaxs∈Ai\Ai(t−1)

δs

where δs = obj(yt)− obj(yt−1)

where yt = yt−1 ∪
{
s×

∏
j 6=iAj(t−1)

}
end for

end for

We need to compute obj(yt) for all s ∈ Ai \ Ai(t−1).
At time step t and layer i, |Ai \ Ai(t−1)| = Ni − (t + 1).
Since Ni � (t + 1) and is around the same scale for all i,
we shorthand the term Ni − (t+ 1) to N . Considering ev-
ery candidate s and the set of outfits

{
s×

∏
j 6=iAj(t−1)

}
introduced, computation for all sets introduced by all s be-
comes N(t + 1)(i−1) times. Summing over all i and all t,

the total computation is
T∑

t=1

(m−1)∑
i=0

N(t+ 1)(i−1) times.

T∑
t=1

(m−1)∑
i=0

N(t+ 1)(i−1) = N
T∑

t=1

1− (t+ 1)m

1− (t+ 1)

= N

T∑
t=1

O(tm−1)

T∑
t=1

O(tm−1) is an (m − 1)-th power series for the first

T natural numbers. A closed formula at m = 4 equals
[T (T+1)

2]2, so the final complexity will be O(NT 4) for
naive greedy.

Algorithm 1 Proposed iterative greedy algorithm for sub-
modular maximization, where obj(y) := C(y) + V (y).
1: AiT := ∅, ∀i
2: ∆obj := ε+ 1 . ε is the tolerance degree for convergence
3: objm−1

prev := 0

4: while ∆m−1
obj ≥ ε do

5: for each layer i = 0, 1, ...(m− 1) do
6: AiT = Ai0 := ∅ . Reset selected pieces in layer i
7: objicur := 0
8: for each time step t = 1, 2, ...T do
9: yt−1 = Ai(t−1) ×

∏
i′ 6=i Ai′T

10: sjti := argmaxs∈Ai\Ai(t−1)
δs . Max increment

11: where δs = obj(yt−1] s)− obj(yt−1)

12: Ait := sjti ∪Ai(t−1) . Update layer i
13: objicur := objicur + δ

s
jt
i

14: end for
15: end for
16: ∆m−1

obj := objm−1
cur − objm−1

prev

17: objm−1
prev := objm−1

cur
18: end while
19: procedure INCREMENTAL ADDITION (yt := yt−1] s)
20: y+

t := s, s ∈ Ai \Ai(t−1)

21: for j ∈ {1, . . . ,m} , j 6= i do
22: if AjT 6= ∅ then
23: y+

t := y+
t ×AjT

24: end if
25: end for
26: yt := yt−1 ∪ y+

t
27: end procedure

Let tg denote at which iteration the while loop is. At iter-
ation tg = 0, for layer i = 0, each candidate piece s will in-

troduce a set of outfits
{
s×

∏
j 6=iAjT

}
. Since each layer

has an initial piece, |AjT | = 1,∀j, and computation for the
objective value of all sets introduced by all s isN times. Af-
ter layer i = 0 selects T pieces, |A0T | = T , and thus layer
i = 1 computes TN times objective values. After that, layer
i = 2 computes T 2N times, and so on. So at gt = 0, the

total computation complexity is
m−1∑
i=0

T iN . For all iterations

tg ≥ 1, we reset selected pieces at each layer i, and select
T pieces again, so the complexity is T (m−1)N, ∀i. Sum-

ming over all layers, we get
m−1∑
i=0

T (m−1)N = mNT (m−1).

At m = 4, we get computation complexity per tg iteration
O(NT 3) for iterative greedy.

4. Vocabulary for catalog/outfit attributes

Tab. 1 lists the predicted attributes organized by types:
pattern, material, shape, collar, article, color. We pair pat-
tern, material, and color with body parts to get localized
attributes. Since modeling correlation between attributes
(e.g. material translucent co-occurs with pattern lace, neck-
line scoop co-occurs with pattern graphics) improves each
individual attribute accuracy [5, 1], we subsample images

pattern material shape collar article color

crochet translucent skirt drape pleated scoop T-shirt white
camouflage leather skirt drape prairie vneck blouse black
floral denim skirt drape flat square jacket red
geo fur skirt length long off-shoulder blazer pink
horizontal striped down skirt length medium sweetheart cardigan orange
lace skirt length short turtle-neck coat yellow
leopard skirt shape tight shirt collar vest green
plaid skirt shape loose dress blue
paisley skirt shape full skirt purple
plain pants loose pants brown
polka dot pants flared jeans gray
tribal pants peg-leg leggings beige
vertical striped pants skinny stocking
zebra pants short boots

ruffle shirt shoes
ruffle dress sunglasses

hat
belt
scarf
bag
socks
sweater

Table 1: Predicted attributes organized by types.

Swap within meta Swap across metaHike

Winter

Summer

Date

Figure 1: Left: outfits from exclusive meta-labels. Middle:
randomly swapping pieces will form actually compatible outfits,
i.e. those swapped within the same meta-label. Right: swapping
pieces across exclusive meta-labels will be closer to true negatives.

from each type and multilabel them for catalog attribute pre-
diction.

5. Examples of false negatives
In Section 4.1 we describe our procedure to generate

negative (not compatible) outfits for evaluation. Here we
give more intuition about why this helps generate safe neg-
atives. In Fig. 1 we show examples of outfits with different
meta labels (season, occasion, function), and show nega-
tives generated by swapping pieces from exclusive meta-
labels, comparing with negatives randomly generated.

6. Qualitative example images for most/least
compatible outfits predicted by baselines

Fig. 2 shows most and least compatible outfits predicted
by baselines, Monomer [4], BiLSTM [3], along with ours
(CTM). Most compatible outfits scored by us are those
that consist of staples. Most compatibles scored by BiL-
STM are those with a special pattern or material, which are
more stylish. Most compatibles scored by Monomer con-
tain mostly white pieces.

Ours (CTM)

BiLSTM

Monomer

Most compatible Least compatible

Figure 2: Most/least compatible outfits predicted by each method. Each row shows a method: our method tends to score outfits with staples
as more compatible; BiLSTM [3] scores outfits more stylish as more compatible; Monomer [4] scores outfits with white pieces as more
compatible.

7. Qualitative example images for personal-
ized capsules obtained by nearest neighbor
baseline

We predict attributes on users’ outfits and all candi-
date pieces, and find the visually similar pieces (measured
in attribute space) to those worn on each user. The re-
sult is shown in Fig. 3, comparing with the result using
our method. Forming capsule wardrobes by using nearest
neighbor does not take compatibility nor diversity into con-
sideration, thus the results are mainly pieces similar in cut,
shape, material and color.

8. Human subject interface

Fig. 4 and Fig. 5 show the interface of our human sub-
ject study on capsule wardrobes. In the instructions, we first
describe the definitions of capsule wardrobes, and show ex-
amples of good and bad capsules, following explanations
of why they are good and bad. In each question, we show
(a) and (b) 2 candidate capsules, and ask subjects to choose
which is better, where better is defined in the instructions:
better capsules are those that can produce more compatible
outfits. We ask subjects to avoid choosing EQUAL. Each
question is also followed by confidence rating: from 1 =
subtle to 3 = very obvious.

References
[1] H. Chen, A. Gallagher, and B. Girod. Describing clothing by

semantic attributes. In ECCV, 2012.
[2] J. Chen, J. Zhu, Z. Wang, X. Zheng, and B. Zhang. Scalable

inference for logistic-normal topic models. In Advances in
Neural Information Processing Systems (NIPS), 2013.

Figure 3: Personalized capsules tailored for user preference.

[3] X. Han, Z. Wu, Y.-G. Jiang, and L. S. Davis. Learning fashion
compatibility with bidirectional lstms. ACM MM, 2017.

[4] R. He, C. Packer, and J. McAuley. Learning compatibility
across categories for heterogeneous item recommendation. In
ICDM, 2016.

[5] K. Yamaguchi, T. Okatani, K. Sudo, K. Murasaki, and
Y. Taniguchi. Mix and match: Joint model for clothing and
attribute recognition. In BMVC, 2015.

Figure 4: Instructions to guide human subjects: we show textual descriptions of capsule wardrobe definitions, and visual examples of good and bad
capsules.

Figure 5: Questions shown to subjects: (a),(b) are sampled pairs of iterative vs. naive greedy capsules. We encourage subjects to avoid selecting EQUAL
unless the difference between two capsules is too subtle to tell. Each comparison is followed by a confidence rating for provided answer. Best viewed on
pdf.

