
A. Model Architecture Details

We base our model on the recently introduced
DeepLabV3 [10] segmentation architecture. We use
ResNet101 [20] as our base feature encoder, with dilated
convolutions, resulting in a feature map which is downsam-
pled by a factor of 8 compared with the original input im-
age. We then append dilated (atrous) convolutional ASPP
module [10]. This module is designed to improve the con-
textual reasoning of the network. We use an ASPP module
comprised of four parallel convolutional layers, with 256
output channels and dilation rates (1, 12, 24, 36), with ker-
nel sizes (12, 32, 32, 32). Additionally, we also apply global
average pooling to the encoded features, and convolve them
to 256 dimensions with a 1 × 1 kernel. We apply batch
normalisation to each of these layers and concatenate the
resulting 1280 features together. This produces the shared
representation between each task.

We then split the network, to decode this representation
to a given task output. For each task, we construct a decoder
consisting of two layers. First, we apply a 1×1 convolution,
outputting 256 features, followed by batch normalisation
and a non-linear activation. Finally, we convolve this output
to the required dimensions for a given task. For classifica-
tion, this will be equal to the number of semantic classes,
otherwise the output will be 1 or 2 channels for depth or in-
stance segmentation respectively. Finally, we apply bilinear
upsampling to scale the output to the same resolution as the
input.

The majority of the model’s parameters and depth is in
the feature encoding, with very little flexibility in each task
decoder. This illustrates the attraction of multitask learning;
most of the compute can be shared between each task to
learn a better shared representation.

A.1. Optimisation

For all experiments, we use an initial learning rate
of 2.5 × 10−3 and polynomial learning rate decay (1 −
iter

max iter )
0.9. We train using stochastic gradient descent,

with Nesterov updates and momentum 0.9 and weight de-
cay 104. We conduct all experiments in this paper using
PyTorch.

For the experiments on the Tiny CityScapes validation
dataset (using a down-sampled resolution of 128× 256) we
train over 50, 000 iterations, using 256 × 256 crops with
batch size of 8 on a single NVIDIA 1080Ti GPU. We apply
random horizontal flipping to the data.

For the full-scale CityScapes benchmark experiment, we
train over 100, 000 iterations with a batch size of 16. We
apply random horizontal flipping (with probability 0.5) and
random scaling (selected from 0.7 - 2.0) to the data dur-
ing training, before making a 512× 512 crop. The training
data is sampled uniformly, and is randomly shuffled for each

epoch. Training takes five days on a single computer with
four NVIDIA 1080Ti GPUs.

B. Further Analysis
This task uncertainty loss is also robust to the value we

use to initialise the task uncertainty values. One of the at-
tractive properties of our approach to weighting multi-task
losses is that it is robust to the initialisation choice for the
homoscedastic noise parameters. Figure 6 shows that for an
array of initial choices of log σ2 from −2.0 to 5.0 the ho-
moscedastic noise and task loss is able to converge to the
same minima. Additionally, the homoscedastic noise terms
converges after only 100 iterations, while the network re-
quires 30, 000+ iterations to train. Therefore our model is
robust to the choice of initial value for the weighting terms.

Figure 7 shows losses and uncertainty estimates for each
task during training of the final model on the full-size
CityScapes dataset. At a point 500 iterations into training,
the model estimates task variance of 0.60, 62.5 and 13.5 for
semantic segmentation, instance segmentation and depth re-
gression, respectively. Becuase the losses are weighted by
the inverse of the uncertainty estimates, this results in a task
weighting ratio of approximately 23 : 0.22 : 1 between se-
mantics, instance and depth, respectively. At the conclu-
sion of training, the three tasks have uncertainty estimates
of 0.075, 3.25 and 20.4, which results in effective weighting
between the tasks of 43: 0.16 : 1. This shows how the task
uncertainty estimates evolve over time, and the approximate
final weightings the network learns. We observe they are far
from uniform, as is often assumed in previous literature.

Interestingly, we observe that this loss allows the net-
work to dynamically tune the weighting. Typically, the ho-
moscedastic noise terms decrease in magnitude as training
progresses. This makes sense, as during training the model
becomes more effective at a task. Therefore the error, and
uncertainty, will decrease. This has a side-effect of increas-
ing the effective learning rate – because the overall uncer-
tainty decreases, the weight for each task’s loss increases.
In our experiments we compensate for this by annealing the
learning rate with a power law.

Finally, a comment on the model’s failure modes. The
model exhibits similar failure modes to state-of-the-art
single-task models. For example, failure with objects out of
the training distribution, occlusion or visually challenging
situations. However, we also observe our multi-task model
tends to fail with similar effect in all three modalities. Ie. an
erroneous pixel’s prediction in one task will often be highly
correlated with error in another modality. Some examples
can be seen in Figure 8.
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(a) Semantic segmentation task
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(b) Instance segmentation task
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(c) Depth regression task

Figure 6: Training plots showing convergence of homoscedastic noise and task loss for an array of initialisation choices for the ho-
moscedastic uncertainty terms for all three tasks. Each plot shows the the homoscedastic noise value optimises to the same solution from
a variety of initialisations. Despite the network taking 10, 000+ iterations for the training loss to converge, the task uncertainty converges
very rapidly after only 100 iterations.
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(a) Semantic segmentation task
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(b) Instance segmentation task
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(c) Depth regression task
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(d) Semantic segmentation task
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(e) Instance segmentation task
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(f) Depth regression task

Figure 7: Learning task uncertainty. These training plots show the losses and task uncertainty estimates for each task during training.
Results are shown for the final model, trained on the fullsize CityScapes dataset.



C. Further Qualitative Results

(a) Input image (b) Semantic segmentation (c) Instance segmentation (d) Depth regression

Figure 8: More qualitative results on test images from the CityScapes dataset.


