
Appendix: supplementary material
We introduce the onset age individual random variable ti = t0 + ⌧i ⇠ N (t0,�

2
⌧ ) instead of the time shift ⌧i.

The obtained hierarchical model is equivalent to the one presented in Section 3, with unchanged parameters ✓ =
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8i 2 J1, NK, zi = (ti, ⇠i, si). The complete log-likelihood writes:
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where the densities q(yi,j |z, ✓), q(zpop|✓), q(zi|✓) and q(✓) are given, up to an additive constant, by:
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noting ⇤ the dimension of the space where the residual kyi,j � ⌘c0,m0,t0, i(ti,j)(wi) � y0k2 is computed, and |y0|, |c0|, |m0|
and |A| the total dimension of y0, c0, m0 and A respectively. We chose either the current [42] or the varifold [7] norm for the
residuals.

Noticing the identity ⌘c0,m0,t0, i(ti,j) = ⌘c0,m0,0, i(ti,j)�t0 , the complete log-likelihood can be decomposed into
log q(y, z, ✓) =

⌦
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↵
Id �  (✓) i.e. the proposed mixed-effects model belongs the curved exponential family.

In this setting, the MCMC-SAEM algorithm presented in Section 4 has a proved convergence.
Exhibiting the sufficient statistics S1 = y0, S2 = c0, S3 = m0, S4 = A, S5 =
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j kyi,j � ⌘c0,m0,t0, i(ti,j)(wi) � y0k2 (see Section 4.5), the update of the model parameters ✓  ✓

? in the M step
of the MCMC-SAEM algorithm can be derived in closed form:
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The intricate update of the parameters t0  t

?
0 and �

2
⌧  �

2
⌧
? can be solved by iterative replacement.

Similarly to Equation 6, the tempered complete log-likelihood writes:
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Tempering can therefore be understood as an artificial increase of the variances �2
✏ , �2

y , �2
c , �2

m and �

2
A when computing

the associated acceptation ratios in the S-MCMC step of the algorithm. This intuition is well-explained in [25].


