

Appendix: supplementary material

We introduce the onset age individual random variable $t_i = t_0 + \tau_i \sim \mathcal{N}(t_0, \sigma_\tau^2)$ instead of the time shift τ_i . The obtained hierarchical model is equivalent to the one presented in Section 3, with unchanged parameters $\theta = (\bar{y}_0, \bar{c}_0, \bar{m}_0, \bar{A}, t_0, \sigma_\tau^2, \sigma_\xi^2, \sigma_\epsilon^2)$ and equivalent random effects $z = (z_{\text{pop}}, z_1, \dots, z_N)$, where $z_{\text{pop}} = (y_0, c_0, m_0, A)$ and $\forall i \in \llbracket 1, N \rrbracket$, $z_i = (t_i, \xi_i, s_i)$. The complete log-likelihood writes:

$$\log q(y, z, \theta) = \sum_{i=1}^N \sum_{j=1}^{n_i} \log q(y_{i,j}|z, \theta) + \log q(z_{\text{pop}}|\theta) + \sum_{i=1}^N \log q(z_i|\theta) + \log q(\theta) \quad (6)$$

where the densities $q(y_{i,j}|z, \theta)$, $q(z_{\text{pop}}|\theta)$, $q(z_i|\theta)$ and $q(\theta)$ are given, up to an additive constant, by:

$$-2 \log q(y_{i,j}|z, \theta) \stackrel{+\text{cst}}{=} \Lambda \log \sigma_\epsilon^2 + \|y_{i,j} - \eta_{c_0, m_0, t_0, \psi_i(t_{i,j})}(w_i) \circ y_0\|^2 / \sigma_\epsilon^2 \quad (7)$$

$$\begin{aligned} -2 \log q(z_{\text{pop}}|\theta) &\stackrel{+\text{cst}}{=} |y_0| \log \sigma_y^2 + \|y_0 - \bar{y}_0\|^2 / \sigma_y^2 + |c_0| \log \sigma_c^2 + \|c_0 - \bar{c}_0\|^2 / \sigma_c^2 \\ &\quad + |m_0| \log \sigma_m^2 + \|m_0 - \bar{m}_0\|^2 / \sigma_m^2 + |A| \log \sigma_A^2 + \|A - \bar{A}\|^2 / \sigma_A^2 \end{aligned} \quad (8)$$

$$-2 \log q(z_i|\theta) \stackrel{+\text{cst}}{=} \log \sigma_\tau^2 + (t_i - t_0)^2 / \sigma_\tau^2 + \log \sigma_\xi^2 + \xi_i^2 / \sigma_\xi^2 + \|s_i\|^2 \quad (9)$$

$$\begin{aligned} -2 \log q(\theta) &\stackrel{+\text{cst}}{=} \|\bar{y}_0 - \bar{y}_0\|^2 / \varsigma_y^2 + \|\bar{c}_0 - \bar{c}_0\|^2 / \varsigma_c^2 + \|\bar{m}_0 - \bar{m}_0\|^2 / \varsigma_m^2 + \|\bar{A} - \bar{A}\|^2 / \varsigma_A^2 \\ &\quad + (t_0 - \bar{t}_0)^2 / \varsigma_t^2 + m_\tau \log \sigma_\tau^2 + m_\tau \sigma_{\tau,0}^2 / \sigma_\tau^2 + m_\xi \log \sigma_\xi^2 + m_\xi \sigma_{\xi,0}^2 / \sigma_\xi^2 \\ &\quad + m_\epsilon \log \sigma_\epsilon^2 + m_\epsilon \sigma_{\epsilon,0}^2 / \sigma_\epsilon^2 \end{aligned} \quad (10)$$

noting Λ the dimension of the space where the residual $\|y_{i,j} - \eta_{c_0, m_0, t_0, \psi_i(t_{i,j})}(w_i) \circ y_0\|^2$ is computed, and $|y_0|$, $|c_0|$, $|m_0|$ and $|A|$ the total dimension of y_0 , c_0 , m_0 and A respectively. We chose either the current [42] or the varifold [7] norm for the residuals.

Noticing the identity $\eta_{c_0, m_0, t_0, \psi_i(t_{i,j})} = \eta_{c_0, m_0, 0, \psi_i(t_{i,j})-t_0}$, the complete log-likelihood can be decomposed into $\log q(y, z, \theta) = \langle S(y, z), \Phi(\theta) \rangle_{\text{Id}} - \Psi(\theta)$ i.e. the proposed mixed-effects model belongs the curved exponential family. In this setting, the MCMC-SAEM algorithm presented in Section 4 has a proved convergence.

Exhibiting the sufficient statistics $S_1 = y_0$, $S_2 = c_0$, $S_3 = m_0$, $S_4 = A$, $S_5 = \sum_i t_i$, $S_6 = \sum_i t_i^2$, $S_7 = \sum_i \xi_i^2$ and $S_8 = \sum_i \sum_j \|y_{i,j} - \eta_{c_0, m_0, t_0, \psi_i(t_{i,j})}(w_i) \circ y_0\|^2$ (see Section 4.5), the update of the model parameters $\theta \leftarrow \theta^*$ in the M step of the MCMC-SAEM algorithm can be derived in closed form:

$$\bar{y}_0^* = [\varsigma_y^2 S_1 + \sigma_y^2 \bar{y}_0] / [\varsigma_y^2 + \sigma_y^2] \quad t_0^* = [\varsigma_t^2 S_5 + \sigma_\tau^{2*} \bar{t}_0] / [N \varsigma_t^2 + \sigma_\tau^{2*}] \quad (11)$$

$$\bar{c}_0^* = [\varsigma_c^2 S_2 + \sigma_c^2 \bar{c}_0] / [\varsigma_c^2 + \sigma_c^2] \quad \sigma_\tau^{2*} = [S_6 - 2t_0^* S_5 + N t_0^{*2} + m_\tau \sigma_{\tau,0}^2] / [N + m_\tau] \quad (12)$$

$$\bar{m}_0^* = [\varsigma_m^2 S_3 + \sigma_m^2 \bar{m}_0] / [\varsigma_m^2 + \sigma_m^2] \quad \sigma_\xi^{2*} = [S_7 + m_\xi \sigma_{\xi,0}^2] / [N + m_\xi] \quad (13)$$

$$\bar{A}^* = [\varsigma_A^2 S_4 + \sigma_A^2 \bar{A}] / [\varsigma_A^2 + \sigma_A^2] \quad \sigma_\epsilon^{2*} = [S_8 + m_\epsilon \sigma_{\epsilon,0}^2] / [\Lambda N \langle n_i \rangle_i + m_\epsilon] \quad (14)$$

The intricate update of the parameters $t_0 \leftarrow t_0^*$ and $\sigma_\tau^2 \leftarrow \sigma_\tau^{2*}$ can be solved by iterative replacement.

Similarly to Equation 6, the tempered complete log-likelihood writes:

$$\log q_T(y, z, \theta) = \sum_{i=1}^N \sum_{j=1}^{n_i} \log q_T(y_{i,j}|z, \theta) + \log q_T(z_{\text{pop}}|\theta) + \sum_{i=1}^N \log q(z_i|\theta) + \log q(\theta) \quad (15)$$

$$\text{with:} \quad -2 \log q_T(y_{i,j}|z, \theta) \stackrel{+\text{cst}}{=} \Lambda \log(T \sigma_\epsilon^2) + \|y_{i,j} - \eta_{c_0, m_0, t_0, \psi_i(t_{i,j})}(w_i) \circ y_0\|^2 / (T \sigma_\epsilon^2) \quad (16)$$

$$\begin{aligned} -2 \log q_T(z_{\text{pop}}|\theta) &\stackrel{+\text{cst}}{=} |y_0| \log(T \sigma_y^2) + \|y_0 - \bar{y}_0\|^2 / (T \sigma_y^2) + |c_0| \log(T \sigma_c^2) + \|c_0 - \bar{c}_0\|^2 / (T \sigma_c^2) \\ &\quad + |m_0| \log(T \sigma_m^2) + \|m_0 - \bar{m}_0\|^2 / (T \sigma_m^2) + |A| \log(T \sigma_A^2) + \|A - \bar{A}\|^2 / (T \sigma_A^2) \end{aligned} \quad (17)$$

Tempering can therefore be understood as an artificial increase of the variances σ_ϵ^2 , σ_y^2 , σ_c^2 , σ_m^2 and σ_A^2 when computing the associated acceptation ratios in the S-MCMC step of the algorithm. This intuition is well-explained in [25].