Appendix: supplementary material

We introduce the onset age individual random variable t; = to + 7; ~ N(to,0?) instead of the time shift 7;.
The obtained hierarchical model is equivalent to the one presented in Section 3, with unchanged parameters 6 =
(%0, 0, M0, A, t0,07,0Z,07) and equivalent random effects 2 = (zpop, 21, -+, 2v), Where zp = (0, c0,m0, A) and

Vi € [1, N], 2z = (ti,&i, $:). The complete log-likelihood writes:
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where the densities ¢(y; j|2,6), ¢(2pop|6), ¢(2:]0) and g(6) are given, up to an additive constant, by:
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noting A the dimension of the space where the residual [|y; j — 7co,mo,t0,¢; (t: ;) (Wi) © Yo
and | A| the total dimension of g, cq, o and A respectively. We chose either the current [42] or the varifold [7] norm for the
residuals.

Noticing the identity 7cy mg,to,0;(t:;) = Meo,mo,0.4(t;;)—to» the complete log-likelihood can be decomposed into
logq(y, z,0) = (S(y,2), <I>(9)>I 4 — Y(0) i.e. the proposed mixed-effects model belongs the curved exponential family.
In this setting, the MCMC-SAEM algorithm presented in Section 4 has a proved convergence.

Exhibiting the sufficient statistics S1 = yo, S2 = co, S5 = mo, Sa = A, S5 = >, t;, S = >, 12, Sz = >, &7 and

= >0 225 Wi = Neo.mo towi(t:.5) (Wi) © Yo || (see Section 4.5), the update of the model parameters 6 <— 6* in the M step
of the MCMC-SAEM algorithm can be derived in closed form:
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Mo =[G 83+ 00, M0 | / [+ ] of = [Sr+meaio] /[N +me] (13)
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The intricate update of the parameters ¢y < t& and 02 « 0'72_* can be solved by iterative replacement.
Similarly to Equation 6, the tempered complete log-likelihood writes:
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+ |mo|log(To2,) + [Imo — Mg ||*/(To2,) + |Allog(To%) + | A — A|*/(To%)

—21og g7 (2pop|0

Tempering can therefore be understood as an artificial increase of the variances o7, o7, 07, 07, and 0% when computing

the associated acceptation ratios in the S-MCMC step of the algorithm. This intuition is well-explained in [25].



