
Supplementary material for
Analyzing Filters Toward Efficient ConvNet

Takumi Kobayashi
National Institute of Advanced Industrial Science and Technology, Japan

takumi.kobayashi@aist.go.jp

A. Orthonormal Steerable Filter
We present the practical algorithm for computing the orthonormal steerable filters that are bases for convolution filters

(Analysis 1, Sec. 2). The orthonormality is embedded into the steerable filter [3] by means of Gram-Schmidt method as
shown in line 6 of Algorithm 1. As described in Sec. 2, our bases of N -th order are based on the steerable filters of up to
N -th order derivatives, thereby producing 1

2 (N + 1)(N + 2) basis filters in total.

Algorithm 1 : Orthonormal steerable basis filters
Input: N : Derivative order, σ: Standard deviation of Gaussian envelope

r: filter (reach) size to produce D={(x, y) ∈ {−r, · · · , r} × {−r, · · · , r}}
1: n-th order Gaussian derivative function: g[n](x, y),

(
∂
∂x

)n
e
− 1

2σ2
(x2+y2)

2: Initial basis set: B = ∅ (empty)
3: for n = 0 to N do
4: n-th order steerable filters: b̃

[n]
i

D←− g[n](cos(θi)x+ sin(θi)y,−sin(θi)x+cos(θi)y), where θi = iπ
n+1

, i ∈ {0, · · · , n}, and D←− means

discretizing a function on D and then applying L2-normalization to produce (2r+1)×(2r+1) filter b̃[n]i
5: for i = 0 to n do
6: Orthonormalize by B: b[n]i =orthnormB(b̃

[n]
i ) such that b[n]i ⊥B, ‖b

[n]
i ‖

2
F =1

7: B ← B ∪ {b[n]i }
8: end for
9: end for

Output: B: Orthonormal basis set which contains |B| = 1
2
(N + 1)(N + 2) basis filters

1



B. Pre-trained Networks For Analyzing Convolution Filters
In Sec. 2, we analyze the optimized convolution filters sampled from the pre-trained ConvNets which are listed in Table A.

Those models except for VGG-M9×9 are downloaded from [1]. Here, we construct VGG-M9×9 by replacing the first convolu-
tion layer of 7×7 in VGG-M with 9×9 convolution since the filter size of 9×9 is not found in any other pre-trained ConvNet
models. The detailed network architecture of VGG-M9×9 and the learning parameters are shown in the next section.

Table A. Number of convolution layers in pre-trained ConvNets which are downloaded from [1] except for VGG-M9×9.
Convolution size

ConvNet 3×3 5×5 7×7 9×9 11×11
VGG-F [2] 3 1 0 0 1
VGG-M [2] 3 1 1 0 0
VGG-M9×9 3 1 0 1 0
VGG-S [2] 3 1 1 0 0
AlexNet [7] 3 1 0 0 1

Caffe-reference [6] 3 1 0 0 1
VGG-vd-16 [9] 13 0 0 0 0
VGG-vd-19 [9] 16 0 0 0 0

GoogLeNet [11] 10 9 1 0 0
ResNet-50 [4] 16 0 1 0 0

ResNet-101 [4] 33 0 1 0 0
ResNet-152 [4] 50 0 1 0 0

C. Network Architecture
This section details the ConvNets that we use in the experiments. The ConvNets include AlexNet [7] and VGG-S/M/F [2] as

well as the deeper ConvNets of VGG-vd-16/19 [9] and ResNet-50 [4], all of which are trained from scratch on ILSVRC2014
training dataset.

All the ConvNets are implemented by using the MatConvNet toolbox1 [12], and we apply SGD with momentum to train
them by following the default leaning parameter values suggested in the toolbox as shown in Table B; the learning rate is
decreased constantly in log-scale at every epoch for AlexNet, VGG-S/M/F and VGG-vd-16/19 and at every 30 epochs for
ResNet-50.

Table B. Learning parameters. We follow the default parameter values suggested in the MatConvNet toolbox except for the mini-batch size
of VGG-vd-16/19. d·e indicates a ceiling function.

AlexNet VGG-F VGG-M VGG-S VGG-vd-16/19 ResNet-50

mini-batch size 256 256 196 128 64 256
number of epoch 20 90

learning rate 10−
16+3t

19 , t ∈ {1, · · · , 20} 10−d
t
30e, t ∈ {1, · · · , 90}

momentum 0.9
weight decay 0.0005 0.0001

The architectures of the ConvNets are detailed in Table C∼L. The moderately deep ConvNets of AlexNet [7] and VGG-
S/M/F [2] are shown in Table C, while the deeper ConvNets of VGG-vd-16/19 [9] and ResNet-50 [4] are respectively shown
in Table E and Table G. Note that in AlexNet (Table C), we apply BatchNormalization (BN) [5] instead of DropOut [10] and
thereby remove the layers of local response normalization. Additionally, VGG-M9×9 and VGG-M11×11, the variants of VGG-M,
are also detailed in Table D. In those tables, we indicate by bold fonts the convolution layers to which Analysis 1 can be
applied; the ConvNets are re-parameterized at those convolution layers by replacing the filter weights with the coefficients
of the bases as trainable parameters. The fully-connected layer (fc6) that Analysis 2 focuses on is also highlighted by gray
cell color. Table F&H∼L show the improved ConvNets by applying our methods.

1http://www.vlfeat.org/matconvnet/, vertion 1.0-beta23.

http://www.vlfeat.org/matconvnet/


Table C. Architectures of moderately deep ConvNets [7, 2]. The conventional layer names are shown in the left-most column with underline.
The first row shows the input image sizes, while the others indicate the parameters either of convolution or max-pooling. The convolution
layer (Conv) is followed by BatchNormalization (BN) [5] and rectified linear unit (ReLU) [8]. We highlight by bold fonts the convolution
to which Analysis 1 is applied, and indicate by gray cell color the fully-connected layer devoted to Analysis 2.

AlexNet [7] VGG-F [2] VGG-M [2] VGG-S [2]

input [227×227×3] [224×224×3] [224×224×3] [224×224×3]

c
o
n
v
1 Conv

BN
ReLU

[11×11×3×96]
stride:4, pad:0

[11×11×3×64]
stride:4, pad:0

[7×7×3×96]
stride:2, pad:0

[7×7×3×96]
stride:2, pad:0

max-pool [3×3]
stride:2, pad:0

[3×3]
stride:2, pad:[0,1,0,1]b

[3×3]
stride:2, pad:0

[3×3]
stride:3, pad:[0,2,0,2]b

c
o
n
v
2 Conv

BN
ReLU

[5×5×48×256]a
stride:1, pad:2

[5×5×64×256]
stride:1, pad:2

[5×5×96×256]
stride:2, pad:1

[5×5×96×256]
stride:1, pad:0

max-pool [3×3]
stride:2, pad:0

[3×3]
stride:2, pad:0

[3×3]
stride:2, pad:[0,1,0,1]b

[2×2]
stride:2, pad:[0,1,0,1]b

c
o
n
v
3 Conv

BN
ReLU

[3×3×256×384]
stride:1, pad:1

[3×3×256×256]
stride:1, pad:1

[3×3×256×512]
stride:1, pad:1

[3×3×256×512]
stride:1, pad:1

c
o
n
v
4 Conv

BN
ReLU

[3×3×192×384]a
stride:1, pad:1

[3×3×256×256]
stride:1, pad:1

[3×3×512×512]
stride:1, pad:1

[3×3×512×512]
stride:1, pad:1

c
o
n
v
5 Conv

BN
ReLU

[3×3×192×256]a
stride:1, pad:1

[3×3×256×256]
stride:1, pad:1

[3×3×512×512]
stride:1, pad:1

[3×3×512×512]
stride:1, pad:1

max-pool [3×3]
stride:2, pad:0

[3×3]
stride:2, pad:0

[3×3]
stride:2, pad:0

[3×3]
stride:3, pad:[0,1,0,1]b

f
c
6

Conv
BN

ReLU

[6×6×256×4096]
stride:1, pad:0

[6×6×256×4096]
stride:1, pad:0

[6×6×512×4096]
stride:1, pad:0

[6×6×512×4096]
stride:1, pad:0

f
c
7

Conv
BN

ReLU

[1×1×4096×4096]
stride:1, pad:0

[1×1×4096×4096]
stride:1, pad:0

[1×1×4096×4096]
stride:1, pad:0

[1×1×4096×4096]
stride:1, pad:0

f
c
8 Conv [1×1×4096×1000]

stride:1, pad:0
[1×1×4096×1000]

stride:1, pad:0
[1×1×4096×1000]

stride:1, pad:0
[1×1×4096×1000]

stride:1, pad:0

SoftMax

aThe convolution filter covers subset of input channels; refer to [7]. bIt means the padding on [left, right, top, bottom].



Table D. ConvNet architectures for the variants of VGG-M [2]. These ConvNets are constructed by replacing only the first 7×7 convolution
of VGG-M with 9× 9 and 11× 11, respectively, for producing 9× 9 and 11× 11 convolution filters used in Sec. 2.1 and Sec. 2.2.

VGG-M9×9 VGG-M11×11

input [224×224×3] [224×224×3]

c
o
n
v
1 Conv

BN
ReLU

[9×9×3×96]
stride:2, pad:1

[11×11×3×96]
stride:2, pad:2

max-pool [3×3]
stride:2, pad:0

[3×3]
stride:2, pad:0

c
o
n
v
2 Conv

BN
ReLU

[5×5×96×256]
stride:2, pad:1

[5×5×96×256]
stride:2, pad:1

max-pool [3×3]
stride:2, pad:[0,1,0,1]

[3×3]
stride:2, pad:[0,1,0,1]

c
o
n
v
3 Conv

BN
ReLU

[3×3×256×512]
stride:1, pad:1

[3×3×256×512]
stride:1, pad:1

c
o
n
v
4 Conv

BN
ReLU

[3×3×512×512]
stride:1, pad:1

[3×3×512×512]
stride:1, pad:1

c
o
n
v
5 Conv

BN
ReLU

[3×3×512×512]
stride:1, pad:1

[3×3×512×512]
stride:1, pad:1

max-pool [3×3]
stride:2, pad:0

[3×3]
stride:2, pad:0

f
c
6

Conv
BN

ReLU

[6×6×512×4096]
stride:1, pad:0

[6×6×512×4096]
stride:1, pad:0

f
c
7

Conv
BN

ReLU

[1×1×4096×4096]
stride:1, pad:0

[1×1×4096×4096]
stride:1, pad:0

f
c
8 Conv [1×1×4096×1000]

stride:1, pad:0
[1×1×4096×1000]

stride:1, pad:0

SoftMax



Table E. Deeper ConvNet architectures of VGG-vd-16/19 [9]. “{ ∼ } × n” means n-times repeat of the block { ∼ }, and
“{ ′′ }” in VGG-vd-19 indicates the same block as that of VGG-vd-16 shown in the left.

VGG-vd-16 [9] VGG-vd-19 [9]

input [224×224×3]

conv1-1 Conv-BN-ReLU: [3×3×3×64], stride:1, pad:1

conv1-2 Conv-BN-ReLU: [3×3×64×64], stride:1, pad:1

max-pool: [2×2], stride:2, pad:0

conv2-1 Conv-BN-ReLU: [3×3×64×128], stride:1, pad:1

conv2-2 Conv-BN-ReLU: [3×3×128×128], stride:1, pad:1

max-pool: [2×2], stride:2, pad:0

conv3-1 Conv-BN-ReLU: [3×3×128×256], stride:1, pad:1

conv3-* { Conv-BN-ReLU: [3×3×256×256], stride:1, pad:1 }×2 { ′′ }×3

max-pool: [2×2], stride:2, pad:0

conv4-1 Conv-BN-ReLU:[3×3×256×512], stride:1, pad:1

conv4-* { Conv-BN-ReLU: [3×3×512×512], stride:1, pad:1 }×2 { ′′ }×3

max-pool: [2×2], stride:2, pad:0

conv5-* { Conv-BN-ReLU: [3×3×512×512], stride:1, pad:1 }×3 { ′′ }×4

max-pool: [2×2], stride:2, pad:0

fc6 Conv-BN-ReLU: [7×7×512×4096], stride:1, pad:0

fc7 Conv-BN-ReLU: [1×1×4096×4096], stride:1, pad:0

fc8 Conv: [1×1×4096×1000], stride:1, pad:0

SoftMax



Table F. ConvNet architectures of improved VGG-M by introducing BoW-based representation (Sec. 3.3) into the fully-connected layer
(fc6) in Table C. It should be noted that bow layer (gray cell color) is introduced in bow models and the max-pooling layer after conv5
is removed in the dense-bow models. The same modification is applied to AlexNet, VGG-S/F and VGG-vd-16/19.

VGG-M bow(avg) VGG-M dense-bow(avg) VGG-M bow(max) VGG-M dense-bow(max)

input [224×224×3]

c
o
n
v
1 Conv

BN
ReLU

[7×7×3×96]
stride:2, pad:0

max-pool [3×3]
stride:2, pad:0

c
o
n
v
2 Conv

BN
ReLU

[5×5×96×256]
stride:2, pad:1

max-pool [3×3]
stride:2, pad:[0,1,0,1]

c
o
n
v
3 Conv

BN
ReLU

[3×3×256×512]
stride:1, pad:1

c
o
n
v
4 Conv

BN
ReLU

[3×3×512×512]
stride:1, pad:1

c
o
n
v
5 Conv

BN
ReLU

[3×3×512×512]
stride:1, pad:1

max-pool [3×3]
stride:2, pad:0

[3×3]
stride:2, pad:0

Conv: [1×1×512×4096], stride:1, pad:0
bow BatchNorm

ReLU ReLU max-pool:[6×6], stride:1, pad:0 max-pool:[13×13]
avg-pool:[6×6], stride:1, pad:0 avg-pool:[13×13] ReLU ReLU

m
l
p
1 Conv

BN
ReLU

[1×1×4096×4096]
stride:1, pad:0

[1×1×4096×4096]
stride:1, pad:0

[1×1×4096×4096]
stride:1, pad:0

[1×1×4096×4096]
stride:1, pad:0

m
l
p
2

Conv [1×1×4096×1000]
stride:1, pad:0

[1×1×4096×1000]
stride:1, pad:0

[1×1×4096×1000]
stride:1, pad:0

[1×1×4096×1000]
stride:1, pad:0

SoftMax



Table G. Basic architecture of ResNet-50 [4] used in Table 5(a,c) of Sec. 4.3. “{A|B}” means the parallel paths of the process A and B
sharing the same input, and “Identical Mapping” indicates passing the input to the output as it is. As described in Sec. 4.3, we focus on
3× 3 convolutions without operating on conv1.

ResNet-50 [4] with configuration (a,c)

input [224×224×3]

conv1 Conv-BN-ReLU: [7×7×3×64], stride:2, pad:3

max-pool: [3×3], stride:2, pad:1

conv2-1


Conv-BN-ReLU: [1×1×64×64], stride:1, pad:0

Conv-BN: [1×1×64×256], stride:1, pad:0 Conv-BN-ReLU: [3×3×64×64], stride:1, pad:1
Conv-BN: [1×1×64×256] stride:1, pad:0


Sum + ReLU

conv2-*


Conv-BN-ReLU: [1×1×256×64], stride:1, pad:0

Identity Mapping Conv-BN-ReLU: [3×3×64×64], stride:1, pad:1
Conv-BN: [1×1×64×256] stride:1, pad:0

× 2

Sum + ReLU

conv3-1


Conv-BN-ReLU: [1×1×256×128], stride:1, pad:0

Conv-BN: [1×1×256×512], stride:2, pad:0 Conv-BN-ReLU: [3×3×128×128], stride:2, pad:1
Conv-BN: [1×1×128×512] stride:1, pad:0


Sum + ReLU

conv3-*


Conv-BN-ReLU: [1×1×512×128], stride:1, pad:0

Identity Mapping Conv-BN-ReLU: [3×3×128×128], stride:1, pad:1
Conv-BN: [1×1×128×512] stride:1, pad:0

× 3

Sum + ReLU

conv4-1


Conv-BN-ReLU: [1×1×512×256], stride:1, pad:0

Conv-BN: [1×1×512×1024], stride:2, pad:0 Conv-BN-ReLU: [3×3×256×256], stride:2, pad:1
Conv-BN: [1×1×256×1024] stride:1, pad:0


Sum + ReLU

conv4-*


Conv-BN-ReLU: [1×1×1024×256], stride:1, pad:0

Identity Mapping Conv-BN-ReLU: [3×3×256×256], stride:1, pad:1
Conv-BN: [1×1×256×1024] stride:1, pad:0

× 5

Sum + ReLU

conv5-1


Conv-BN-ReLU: [1×1×1024×512], stride:1, pad:0

Conv-BN: [1×1×1024×2048], stride:2, pad:0 Conv-BN-ReLU: [3×3×512×512], stride:2, pad:1
Conv-BN: [1×1×512×2048] stride:1, pad:0


Sum + ReLU

conv5-*


Conv-BN-ReLU: [1×1×2048×512], stride:1, pad:0

Identity Mapping Conv-BN-ReLU: [3×3×512×512], stride:1, pad:1
Conv-BN: [1×1×512×2048] stride:1, pad:0

× 2

Sum + ReLU

avg-pool: [7×7], stride:1, pad:0

Conv: [1×1×2048×1000], stride:1, pad:0

SoftMax



Table H. Improved architecture of ResNet-50 used in Table 5(b,d) by introducing BoW-based representation (Sec. 3.3) according to the
analysis in Sec. 4.3. The bow layer is applied to the concatenated features at conv4-6 of which dimensionality is reduced like PCA in
the BoW framework, while the layers of conv5-* in Table G are removed; this model is actually composed of 43 convolution layers.

ResNet-50 [4] with configuration (b,d)

input [224×224×3]

conv1 Conv-BN-ReLU: [7×7×3×64], stride:2, pad:3

max-pool: [3×3], stride:2, pad:1

conv2-1


Conv-BN-ReLU: [1×1×64×64], stride:1, pad:0

Conv-BN: [1×1×64×256], stride:1, pad:0 Conv-BN-ReLU: [3×3×64×64], stride:1, pad:1
Conv-BN: [1×1×64×256] stride:1, pad:0


Sum + ReLU

conv2-*


Conv-BN-ReLU: [1×1×256×64], stride:1, pad:0

Identity Mapping Conv-BN-ReLU: [3×3×64×64], stride:1, pad:1
Conv-BN: [1×1×64×256] stride:1, pad:0

× 2

Sum + ReLU

conv3-1


Conv-BN-ReLU: [1×1×256×128], stride:1, pad:0

Conv-BN: [1×1×256×512], stride:2, pad:0 Conv-BN-ReLU: [3×3×128×128], stride:2, pad:1
Conv-BN: [1×1×128×512] stride:1, pad:0


Sum + ReLU

conv3-*


Conv-BN-ReLU: [1×1×512×128], stride:1, pad:0

Identity Mapping Conv-BN-ReLU: [3×3×128×128], stride:1, pad:1
Conv-BN: [1×1×128×512] stride:1, pad:0

× 3

Sum + ReLU

conv4-1


Conv-BN-ReLU: [1×1×512×256], stride:1, pad:0

Conv-BN: [1×1×512×1024], stride:2, pad:0 Conv-BN-ReLU: [3×3×256×256], stride:2, pad:1
Conv-BN: [1×1×256×1024] stride:1, pad:0


Sum + ReLU

conv4-*


Conv-BN-ReLU: [1×1×1024×256], stride:1, pad:0

Identity Mapping Conv-BN-ReLU: [3×3×256×256], stride:1, pad:1
Conv-BN: [1×1×256×1024] stride:1, pad:0

× 4

Sum + ReLU

conv4-6


Conv-BN-ReLU: [1×1×1024×256], stride:1, pad:0

Identity Mapping Conv-BN-ReLU: [3×3×256×256], stride:1, pad:1
Conv-BN: [1×1×256×1024] stride:1, pad:0


Concatenation + ReLU

Dimensionality
reduction Conv-BN-ReLU: [1×1×2048×1024], stride:1, pad:0

bow
Conv-BN-ReLU: [1×1×1024×2048], stride:1, pad:0
avg-pool: [7×7], stride:1, pad:0

Conv: [1×1×2048×1000], stride:1, pad:0

SoftMax



Table I. Improved architecture of ResNet-50 used in Table 5(e) by enlarging the filter size in conv4 layers.

ResNet-50 [4] with configuration (e)

input [224×224×3]

conv1 Conv-BN-ReLU: [7×7×3×64], stride:2, pad:3

max-pool: [3×3], stride:2, pad:1

conv2-1


Conv-BN-ReLU: [1×1×64×64], stride:1, pad:0

Conv-BN: [1×1×64×256], stride:1, pad:0 Conv-BN-ReLU: [3×3×64×64], stride:1, pad:1
Conv-BN: [1×1×64×256] stride:1, pad:0


Sum + ReLU

conv2-*


Conv-BN-ReLU: [1×1×256×64], stride:1, pad:0

Identity Mapping Conv-BN-ReLU: [3×3×64×64], stride:1, pad:1
Conv-BN: [1×1×64×256] stride:1, pad:0

× 2

Sum + ReLU

conv3-1


Conv-BN-ReLU: [1×1×256×128], stride:1, pad:0

Conv-BN: [1×1×256×512], stride:2, pad:0 Conv-BN-ReLU: [3×3×128×128], stride:2, pad:1
Conv-BN: [1×1×128×512] stride:1, pad:0


Sum + ReLU

conv3-*


Conv-BN-ReLU: [1×1×512×128], stride:1, pad:0

Identity Mapping Conv-BN-ReLU: [3×3×128×128], stride:1, pad:1
Conv-BN: [1×1×128×512] stride:1, pad:0

× 3

Sum + ReLU

conv4-1


Conv-BN-ReLU: [1×1×512×256], stride:1, pad:0

Conv-BN: [1×1×512×1024], stride:2, pad:0 Conv-BN-ReLU: [5×5×256×256], stride:2, pad:2
Conv-BN: [1×1×256×1024] stride:1, pad:0


Sum + ReLU

conv4-*


Conv-BN-ReLU: [1×1×1024×256], stride:1, pad:0

Identity Mapping Conv-BN-ReLU: [5×5×256×256], stride:1, pad:2
Conv-BN: [1×1×256×1024] stride:1, pad:0

× 4

Sum + ReLU

conv4-6


Conv-BN-ReLU: [1×1×1024×256], stride:1, pad:0

Identity Mapping Conv-BN-ReLU: [5×5×256×256], stride:1, pad:2
Conv-BN: [1×1×256×1024] stride:1, pad:0


Concatenation + ReLU

Dimensionality
reduction Conv-BN-ReLU: [1×1×2048×1024], stride:1, pad:0

bow
Conv-BN-ReLU: [1×1×1024×2048], stride:1, pad:0
avg-pool: [7×7], stride:1, pad:0

Conv: [1×1×2048×1000], stride:1, pad:0

SoftMax



Table J. Improved architecture of ResNet-50 used in Table 5(f) by adding 5 × 5 convolution in the residual path at conv4 layers. The
number of channels which the 5× 5 convolution receives is half of that in the corresponding 3× 3 convolution.

ResNet-50 [4] with configuration (f)

input [224×224×3]

conv1 Conv-BN-ReLU: [7×7×3×64], stride:2, pad:3

max-pool: [3×3], stride:2, pad:1

conv2-1


Conv-BN-ReLU: [1×1×64×64], stride:1, pad:0

Conv-BN: [1×1×64×256], stride:1, pad:0 Conv-BN-ReLU: [3×3×64×64], stride:1, pad:1
Conv-BN: [1×1×64×256] stride:1, pad:0


Sum + ReLU

conv2-*


Conv-BN-ReLU: [1×1×256×64], stride:1, pad:0

Identity Mapping Conv-BN-ReLU: [3×3×64×64], stride:1, pad:1
Conv-BN: [1×1×64×256] stride:1, pad:0

× 2

Sum + ReLU

conv3-1


Conv-BN-ReLU: [1×1×256×128], stride:1, pad:0

Conv-BN: [1×1×256×512], stride:2, pad:0 Conv-BN-ReLU: [3×3×128×128], stride:2, pad:1
Conv-BN: [1×1×128×512] stride:1, pad:0


Sum + ReLU

conv3-*


Conv-BN-ReLU: [1×1×512×128], stride:1, pad:0

Identity Mapping Conv-BN-ReLU: [3×3×128×128], stride:1, pad:1
Conv-BN: [1×1×128×512] stride:1, pad:0

× 3

Sum + ReLU

conv4-1


Conv-BN: Conv-BN-ReLU: [1×1×512×256], stride:1, pad:0 Conv-BN-ReLU: [1×1×512×128], stride:1, pad:0
[1×1×512×1024], Conv-BN-ReLU: [3×3×256×256], stride:2, pad:1 Conv-BN-ReLU: [5×5×128×128], stride:2, pad:2
stride:2, pad:0 Conv-BN: [1×1×256×1024] stride:1, pad:0 Conv-BN: [1×1×128×1024] stride:1, pad:0


Sum + ReLU

conv4-*


Identity Conv-BN-ReLU: [1×1×1024×256], stride:1, pad:0 Conv-BN-ReLU: [1×1×1024×128], stride:1, pad:0
Mapping Conv-BN-ReLU: [3×3×256×256], stride:1, pad:1 Conv-BN-ReLU: [5×5×128×128], stride:1, pad:2

Conv-BN: [1×1×256×1024] stride:1, pad:0 Conv-BN: [1×1×128×1024] stride:1, pad:0

× 4

Sum + ReLU

conv4-6


Identity Conv-BN-ReLU: [1×1×1024×256], stride:1, pad:0 Conv-BN-ReLU: [1×1×1024×128], stride:1, pad:0
Mapping Conv-BN-ReLU: [3×3×256×256], stride:1, pad:1 Conv-BN-ReLU: [5×5×128×128], stride:1, pad:2

Conv-BN: [1×1×256×1024] stride:1, pad:0 Conv-BN: [1×1×128×1024] stride:1, pad:0


Concatenation + ReLU

Dimensionality
reduction Conv-BN-ReLU: [1×1×3072×1024], stride:1, pad:0

bow
Conv-BN-ReLU: [1×1×1024×2048], stride:1, pad:0
avg-pool: [7×7], stride:1, pad:0

Conv: [1×1×2048×1000], stride:1, pad:0

SoftMax



Table K. Improved architecture of ResNet-50 used in Table 5(g) by adding 5 × 5 convolution at conv2∼conv4 layers. The number of
channels which the 5× 5 convolution receives is half of that in the corresponding 3× 3 convolution.

ResNet-50 [4] with configuration (g)

input [224×224×3]

conv1 Conv-BN-ReLU: [7×7×3×64], stride:2, pad:3

max-pool: [3×3], stride:2, pad:1

conv2-1


Conv-BN: Conv-BN-ReLU: [1×1×64×64], stride:1, pad:0 Conv-BN-ReLU: [1×1×64×32], stride:1, pad:0
[1×1×64×256], Conv-BN-ReLU: [3×3×64×64], stride:1, pad:1 Conv-BN-ReLU: [5×5×32×32], stride:1, pad:2
stride:1, pad:0 Conv-BN: [1×1×64×256] stride:1, pad:0 Conv-BN: [1×1×32×256] stride:1, pad:0


Sum + ReLU

conv2-*


Identity Conv-BN-ReLU: [1×1×256×64], stride:1, pad:0 Conv-BN-ReLU: [1×1×256×32], stride:1, pad:0
Mapping Conv-BN-ReLU: [3×3×64×64], stride:1, pad:1 Conv-BN-ReLU: [5×5×32×32], stride:1, pad:2

Conv-BN: [1×1×64×256] stride:1, pad:0 Conv-BN: [1×1×32×256] stride:1, pad:0

× 2

Sum + ReLU

conv3-1


Conv-BN: Conv-BN-ReLU: [1×1×256×128], stride:1, pad:0 Conv-BN-ReLU: [1×1×256×64], stride:1, pad:0
[1×1×256×512], Conv-BN-ReLU: [3×3×128×128], stride:2, pad:1 Conv-BN-ReLU: [5×5×64×64], stride:2, pad:2
stride:2, pad:0 Conv-BN: [1×1×128×512] stride:1, pad:0 Conv-BN: [1×1×64×512] stride:1, pad:0


Sum + ReLU

conv3-*


Identity Conv-BN-ReLU: [1×1×512×128], stride:1, pad:0 Conv-BN-ReLU: [1×1×512×64], stride:1, pad:0
Mapping Conv-BN-ReLU: [3×3×128×128], stride:1, pad:1 Conv-BN-ReLU: [5×5×64×64], stride:1, pad:2

Conv-BN: [1×1×128×512] stride:1, pad:0 Conv-BN: [1×1×64×512] stride:1, pad:0

× 3

Sum + ReLU

conv4-1


Conv-BN: Conv-BN-ReLU: [1×1×512×256], stride:1, pad:0 Conv-BN-ReLU: [1×1×512×128], stride:1, pad:0
[1×1×512×1024], Conv-BN-ReLU: [3×3×256×256], stride:2, pad:1 Conv-BN-ReLU: [5×5×128×128], stride:2, pad:2
stride:2, pad:0 Conv-BN: [1×1×256×1024] stride:1, pad:0 Conv-BN: [1×1×128×1024] stride:1, pad:0


Sum + ReLU

conv4-*


Identity Conv-BN-ReLU: [1×1×1024×256], stride:1, pad:0 Conv-BN-ReLU: [1×1×1024×128], stride:1, pad:0
Mapping Conv-BN-ReLU: [3×3×256×256], stride:1, pad:1 Conv-BN-ReLU: [5×5×128×128], stride:1, pad:2

Conv-BN: [1×1×256×1024] stride:1, pad:0 Conv-BN: [1×1×128×1024] stride:1, pad:0

× 4

Sum + ReLU

conv4-6


Identity Conv-BN-ReLU: [1×1×1024×256], stride:1, pad:0 Conv-BN-ReLU: [1×1×1024×128], stride:1, pad:0
Mapping Conv-BN-ReLU: [3×3×256×256], stride:1, pad:1 Conv-BN-ReLU: [5×5×128×128], stride:1, pad:2

Conv-BN: [1×1×256×1024] stride:1, pad:0 Conv-BN: [1×1×128×1024] stride:1, pad:0


Concatenation + ReLU

Dimensionality
reduction Conv-BN-ReLU: [1×1×3072×1024], stride:1, pad:0

bow
Conv-BN-ReLU: [1×1×1024×2048], stride:1, pad:0
avg-pool: [7×7], stride:1, pad:0

Conv: [1×1×2048×1000], stride:1, pad:0

SoftMax



Table L. Improved architecture of ResNet-50 used in Table 5(h) by adding 5 × 5 convolution at conv2∼conv4 layers. The number of
channels which the 5× 5 convolution receives is the same as that in the corresponding 3× 3 convolution.

ResNet-50 [4] with configuration (h)

input [224×224×3]

conv1 Conv-BN-ReLU: [7×7×3×64], stride:2, pad:3

max-pool: [3×3], stride:2, pad:1

conv2-1


Conv-BN: Conv-BN-ReLU: [1×1×64×64], stride:1, pad:0 Conv-BN-ReLU: [1×1×64×64], stride:1, pad:0
[1×1×64×256], Conv-BN-ReLU: [3×3×64×64], stride:1, pad:1 Conv-BN-ReLU: [5×5×64×64], stride:1, pad:2
stride:1, pad:0 Conv-BN: [1×1×64×256] stride:1, pad:0 Conv-BN: [1×1×64×256] stride:1, pad:0


Sum + ReLU

conv2-*


Identity Conv-BN-ReLU: [1×1×256×64], stride:1, pad:0 Conv-BN-ReLU: [1×1×256×64], stride:1, pad:0
Mapping Conv-BN-ReLU: [3×3×64×64], stride:1, pad:1 Conv-BN-ReLU: [5×5×64×64], stride:1, pad:2

Conv-BN: [1×1×64×256] stride:1, pad:0 Conv-BN: [1×1×64×256] stride:1, pad:0

× 2

Sum + ReLU

conv3-1


Conv-BN: Conv-BN-ReLU: [1×1×256×128], stride:1, pad:0 Conv-BN-ReLU: [1×1×256×128], stride:1, pad:0
[1×1×256×512], Conv-BN-ReLU: [3×3×128×128], stride:2, pad:1 Conv-BN-ReLU: [5×5×128×128], stride:2, pad:2
stride:2, pad:0 Conv-BN: [1×1×128×512] stride:1, pad:0 Conv-BN: [1×1×128×512] stride:1, pad:0


Sum + ReLU

conv3-*


Identity Conv-BN-ReLU: [1×1×512×128], stride:1, pad:0 Conv-BN-ReLU: [1×1×512×128], stride:1, pad:0
Mapping Conv-BN-ReLU: [3×3×128×128], stride:1, pad:1 Conv-BN-ReLU: [5×5×128×128], stride:1, pad:2

Conv-BN: [1×1×128×512] stride:1, pad:0 Conv-BN: [1×1×128×512] stride:1, pad:0

× 3

Sum + ReLU

conv4-1


Conv-BN: Conv-BN-ReLU: [1×1×512×256], stride:1, pad:0 Conv-BN-ReLU: [1×1×512×256], stride:1, pad:0
[1×1×512×1024], Conv-BN-ReLU: [3×3×256×256], stride:2, pad:1 Conv-BN-ReLU: [5×5×256×256], stride:2, pad:2
stride:2, pad:0 Conv-BN: [1×1×256×1024] stride:1, pad:0 Conv-BN: [1×1×256×1024] stride:1, pad:0


Sum + ReLU

conv4-*


Identity Conv-BN-ReLU: [1×1×1024×256], stride:1, pad:0 Conv-BN-ReLU: [1×1×1024×256], stride:1, pad:0
Mapping Conv-BN-ReLU: [3×3×256×256], stride:1, pad:1 Conv-BN-ReLU: [5×5×256×256], stride:1, pad:2

Conv-BN: [1×1×256×1024] stride:1, pad:0 Conv-BN: [1×1×256×1024] stride:1, pad:0

× 4

Sum + ReLU

conv4-6


Identity Conv-BN-ReLU: [1×1×1024×256], stride:1, pad:0 Conv-BN-ReLU: [1×1×1024×256], stride:1, pad:0
Mapping Conv-BN-ReLU: [3×3×256×256], stride:1, pad:1 Conv-BN-ReLU: [5×5×256×256], stride:1, pad:2

Conv-BN: [1×1×256×1024] stride:1, pad:0 Conv-BN: [1×1×256×1024] stride:1, pad:0


Concatenation + ReLU

Dimensionality
reduction Conv-BN-ReLU: [1×1×3072×1024], stride:1, pad:0

bow
Conv-BN-ReLU: [1×1×1024×2048], stride:1, pad:0
avg-pool: [7×7], stride:1, pad:0

Conv: [1×1×2048×1000], stride:1, pad:0

SoftMax



References
[1] MatConvNet pre-trained models. http://www.vlfeat.org/matconvnet/pretrained/. Accessed: 2017-1-19.
[2] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the devil in the details: Delving deep into convolutional nets.

BMVC, 2014.
[3] W. T. Freeman and E. H. Adelson. The design and use of steerable filters. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 13(9):891–906, 1991.
[4] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, pages 770–778, 2016.
[5] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. Journal of

Machine Learning Research, 37:448–456, 2015.
[6] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture

for fast feature embedding. arXiv, 1408.5093, 2014.
[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, pages

1097–1105, 2012.
[8] V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann machines. In ICML, pages 807–814, 2010.
[9] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409.1556, 2014.

[10] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout : A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Research, 15:1929–1958, 2014.

[11] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with
convolutions. In CVPR, pages 1–9, 2015.

[12] A. Vedaldi and K. Lenc. MatConvNet – convolutional neural networks for matlab. In ACM MM, 2015.

http://www.vlfeat.org/matconvnet/pretrained/

