Supplementary material for
Analyzing Filters Toward Efficient ConvNet

Takumi Kobayashi
National Institute of Advanced Industrial Science and Technology, Japan
takumi.kobayashi@aist.go. jp

A. Orthonormal Steerable Filter

We present the practical algorithm for computing the orthonormal steerable filters that are bases for convolution filters
(Analysis 1, Sec. 2). The orthonormality is embedded into the steerable filter [3] by means of Gram-Schmidt method as
shown in line 6 of Algorithm 1. As described in Sec. 2, our bases of N-th order are based on the steerable filters of up o
N-th order derivatives, thereby producing 1 (N + 1)(N + 2) basis filters in total.

Algorithm 1 : Orthonormal steerable basis filters
Input: N: Derivative order, o: Standard deviation of Gaussian envelope
r: filter (reach) size to produce D={(z,y) € {—r, - ,r} x {—r,--- ,r}}
1: n-th order Gaussian derivative function: g"\(z, y) 2 (£)"e” 507 (@)
2: Initial basis set: B = () (empty)
3: forn =0to N do
4: n-th order steerable filters: I;En] 2 g["](cos(ﬁi)x-‘rsin(&;)y, —sin(0;)T + cos(0;)y), Where 6; = ni—j:l, i€ {0,---,n}, and & means

discretizing a function on ID and then applying L2-normalization to produce (2r+1) x (2r+1) filter l~)£n]

50 fori=0tondo

6: Orthonormalize by B: b\" = orthnorms (b/™) such that 6" L B, ||b/")||% =1
7 B+ BU{p"}

8: end for

9: end for

Output: 3: Orthonormal basis set which contains |B| = (N + 1)(N + 2) basis filters

B. Pre-trained Networks For Analyzing Convolution Filters

In Sec. 2, we analyze the optimized convolution filters sampled from the pre-trained ConvNets which are listed in Table A.
Those models except for VGG-Mg 9 are downloaded from [1]. Here, we construct VGG-Mg 9 by replacing the first convolu-
tion layer of 7 x 7 in VGG-M with 9 x 9 convolution since the filter size of 9 x 9 is not found in any other pre-trained ConvNet
models. The detailed network architecture of VGG-Mg g and the learning parameters are shown in the next section.

Table A. Number of convolution layers in pre-trained ConvNets which are downloaded from [1] except for VGG-Mg 9.
Convolution size

ConvNet 3x3 bHxbHh Tx7 9x9 11xl11
VGG-F [2] 3 1 0 0 1
VGG-M [2] 3 1 1 0 0
VGG-Mg o 3 1 0 1 0
VGG-S [2] 3 1 1 0 0
AlexNet [7] 3 1 0 0 1
Caffe-reference [0] 3 1 0 0 1
VGG-vd-16 [9] 13 0 0 0 0
VGG-vd-19 [9] 16 0 0 0 0
GoogleNet [11] 10 9 1 0 0
ResNet-50 [4] 16 0 1 0 0
ResNet-101 [4] 33 0 1 0 0
ResNet-152 [4] 50 0 1 0 0

C. Network Architecture

This section details the ConvNets that we use in the experiments. The ConvNets include AlexNet [7] and VGG-S/M/F [2] as
well as the deeper ConvNets of VGG-vd-16/19 [9] and ResNet-50 [4], all of which are trained from scratch on ILSVRC2014
training dataset.

All the ConvNets are implemented by using the MatConvNet toolbox' [12], and we apply SGD with momentum to train
them by following the default leaning parameter values suggested in the toolbox as shown in Table B; the learning rate is
decreased constantly in log-scale at every epoch for AlexNet, VGG-S/M/F and VGG-vd-16/19 and at every 30 epochs for
ResNet-50.

Table B. Learning parameters. We follow the default parameter values suggested in the MatConvNet toolbox except for the mini-batch size
of VGG-vd-16/19. [-] indicates a ceiling function.

AlexNet | VGG-F | VGG-M | VGG-S |, VGG-vd-16/19 | ResNet-50
mini-batch size 256 256 196 ' 128 | 64 w 256
number of epoch 20 : 90
learning rate 1025, te {1, -, 20} 107 [l te {1,090}
momentum 0.9
weight decay 0.0005 | 0.0001

The architectures of the ConvNets are detailed in Table C~L. The moderately deep ConvNets of AlexNet [7] and VGG-
S/M/F [2] are shown in Table C, while the deeper ConvNets of VGG-vd-16/19 [9] and ResNet-50 [4] are respectively shown
in Table E and Table G. Note that in AlexNet (Table C), we apply BatchNormalization (BN) [5] instead of DropOut [10] and
thereby remove the layers of local response normalization. Additionally, VGG-Mgyg and VGG-Mj1x11, the variants of VGG-M,
are also detailed in Table D. In those tables, we indicate by bold fonts the convolution layers to which Analysis 1 can be
applied; the ConvNets are re-parameterized at those convolution layers by replacing the filter weights with the coefficients
of the bases as trainable parameters. The fully-connected layer (£c6) that Analysis 2 focuses on is also highlighted by gray
cell color. Table F&H~L show the improved ConvNets by applying our methods.

'ttp://www.vlfeat .org/matconvnet/, vertion 1.0-beta23.

http://www.vlfeat.org/matconvnet/

Table C. Architectures of moderately deep ConvNets [7, 2]. The conventional layer names are shown in the left-most column with underline.
The first row shows the input image sizes, while the others indicate the parameters either of convolution or max-pooling. The convolution
layer (Conv) is followed by BatchNormalization (BN) [5] and rectified linear unit (ReLU) [8]. We highlight by bold fonts the convolution
to which Analysis 1 is applied, and indicate by gray cell color the fully-connected layer devoted to Analysis 2.

AlexNet [7] VGG-F [2] VGG-M [2] VGG-S [2]
input 227x227%x3 224%x224%x3 224x224%x3 224 x224 %3
p
—
2 Cé’l‘\}v [11x11x3x96] [11x11x3x64] [7 7 x 3 x96] [7 %7 x3x96]
S ReL.U stride:4, pad:0 stride:4, pad:0 stride:2, pad:0 stride:2, pad:0
aebool [3x3] [3x3] [3x3] [3x3]
P stride:2, pad:0 stride:2, pad:[O,l,O,l]b stride:2, pad:0 stride:3, pad:[0,2,0,2]b
N
2 C];’I‘\}V [5x 5 x 48 x 256]° [5 x5 x 64 x 256] [5 % 5 x 96 x 256] [5 % 5 x 96 x 256]
8 ReL.U stride:1, pad:2 stride:1, pad:2 stride:2, pad:1 stride:1, pad:0
[3x 3] [3x3] [3x3] (2x2]
max-pool o . o . o . b o . b
stride:2, pad:0 stride:2, pad:0 stride:2, pad:[0,1,0,1] stride:2, pad:[0,1,0,1]
™
> C];’I‘\‘IV [3x 3256 x 384] [3 x 3 x 256 x 256] [3x3x256x512] [3x3x256x512]
8 ReLLU stride:1, pad:1 stride:1, pad:1 stride:1, pad:1 stride: 1, pad:1
<t
Z C];’I‘\‘IV [3x 3 x192x384] [8 % 3 x 256 x 256] [3x3x512x512] [3x3x512x512]
S ReL.U stride:1, pad:1 stride:1, pad:1 stride:1, pad:1 stride: 1, pad:1
[T}
Z CI;’II\}V [3x3x192x256]* [3x 3 %256 x 2506] [3x3x512x512) [3x3x512x512]
S ReL.U stride:1, pad:1 stride:1, pad:1 stride:1, pad:1 stride: 1, pad:1
N [3x3] [3%3] [3x3] [3%3]
P stride:2, pad:0 stride:2, pad:0 stride:2, pad:0 stride:3, pad:[O,l,O,l]b
© C];’I‘\}V [6 % 6 x 256 x 4096] [6 x 6 x 256 x 4096] [6x 6% 512 x 4096] [6x6x 512 x 4096]
“ ReL.U stride:1, pad:0 stride:1, pad:0 stride:1, pad:0 stride: 1, pad:0
x Cé)ll\llv [1x1x4096x4096] [1x1x4096x4096] [1x1x4096 x4096] [1x1x4096 x4096]
o ReL.U stride:1, pad:0 stride:1, pad:0 stride:1, pad:0 stride:1, pad:0
%‘ Conv [1x1x4096x1000] [1x1x4096x 1000] [1x1x4096x1000] [1x1x4096x 1000]
w stride: 1, pad:0 stride: 1, pad:0 stride: 1, pad:0 stride: 1, pad:0
SoftMax

®The convolution filter covers subset of input channels; refer to [7]. bIt means the padding on [left, right, top, bottom].

Table D. ConvNet architectures for the variants of VGG-M [2]. These ConvNets are constructed by replacing only the first 7 x 7 convolution
of VGG-M with 9 x 9 and 11 X 11, respectively, for producing 9 x 9 and 11 X 11 convolution filters used in Sec. 2.1 and Sec. 2.2.

VGG-Moxo VGG-M11x11
input [224 x 224 x 3] [224 x 224 x 3]
—
z Con 9% 9 x3x96] [11x11 %3 x96]
S ReL.U stride:2, pad:1 stride:2, pad:2
max-pool [33] [33]
stride:2, pad:0 stride:2, pad:0
N
z Conv [5 % 5 x 96 256] [5 % 5 x 96 x 256]
S ReL.U stride:2, pad:1 stride:2, pad:1
max-pool [3x 3] [3x 3]
stride:2, pad:[0,1,0,1] stride:2, pad:[0,1,0,1]
™
2 CI;’I‘\’IV [3x3x256x512] [3x3x256x512]
9 ReL.U stride:1, pad:1 stride: 1, pad:1
e
2 C];QV [3x3x512x512] [3x3x512x512]
S ReL.U stride:1, pad:1 stride:1, pad:1
T e
2 GO [3x3x512x5127] [3x3x512x512)
S ReL.U stride:1, pad:1 stride: 1, pad:1
max-pool [3x 3] [3x3]
stride:2, pad:0 stride:2, pad:0
@ Com [6x6x512x4096] [6x6x512x4096]
w ReL.U stride: 1, pad:0 stride: 1, pad:0
o SO [1x1x4096x4096] [1x 1% 4096 x 4096]
¢} BN . .
H ReLU stride:1, pad:0 stride:1, pad:0
T o [Ix1x4096x1000] [1x1x4096x 1000]
O Conv . .
H stride:1, pad:0 stride:1, pad:0

SoftMax

Table E. Deeper ConvNet architectures of VGG-vd-16/19 [9]. “{ ~ } X n” means n-times repeat of the block { ~ }, and
“{ 1 }”in VGG-vd-19 indicates the same block as that of VGG-vd-16 shown in the left.

VGG-vd-16 [V] VGG-vd-19 [9]
input [224 % 224 % 3]
convicl ConvBN-RELU: [3x3x3x64], stide:l,padil
convl-2 Conv-BN-ReLU: [3 x 3 x 64 x 64], stride:1, pad:1

conv2-1 Conv-BN-ReLU: [3x3x64x128], stride:1, pad:1

conv2-2 Conv-BN-ReLU: [3 x 3 x 128 % 128], stride:1, pad:1

c6 Conv-BN-ReLU: [7x 7 x512x4096], stride:1, pad:0
c7 Conv-BN-ReLU: [1 x 1 x 4096 x 4096], stride:1, pad:0
fc8 Conv: [1x1x4096 x 1000], stride:1, pad:0

SoftMax

Table F. ConvNet architectures of improved VGG-M by introducing BoW-based representation (Sec. 3.3) into the fully-connected layer
(£c6) in Table C. It should be noted that bow layer (gray cell color) is introduced in bow models and the max-pooling layer after conv5
is removed in the dense-bow models. The same modification is applied to AlexNet, VGG-S/F and VGG-vd-16/19.

VGG-M bow(avg) VGG-M dense-bow(avg) VGG-M bow(max) VGG-M dense-bow(max)
input [224 x 224 x 3]
—
5 Gon [7 %7 % 3% 96]
8 ReLU stride:2, pad:0
e T Gag T
P stride:2, pad:0
N
z Com [5 % 5 x 96 x 256]
8l ReLU stride:2, pad:1
s e
P stride:2, pad:[0,1,0,1]
™
o Conv [3x3x256x512]
8l ReLU stride:1, pad:1
T T
o o [8x3x512x512]
ol ReLU stride:1, pad:1
R e e e e e L e e T e T
5 G [3x3x512x512]
8 ReLU stride: 1, pad:1
masool Bx3 Bx3
P stride:2, pad:0 stride:2, pad:0
Conv: [1x1x512x4096], stride:1, pad:0
bow BatchNorm
ReLU ReLU max-pool:[6 x 6], stride:1, pad:0 max-pool:[13 x 13]
avg-pool:[6 X 6], stride:1, pad:0 avg-pool:[13 x 13] ReLU ReLU
ZL Cé’l‘\llv [1x 1 x4096 x 4096] [1x 1 x 4096 x 4096] [1x 1 x4096 x 4096] [1x 1 x4096 x 4096]
€ ReLU stride:1, pad:0 stride:1, pad:0 stride:1, pad:0 stride:1, pad:0
a Comv [1x 1% 4096 x 1000] [1x1x4096 x 1000] [1x 1% 4096 x 1000] [1x1x4096 x 1000]
= stride:1, pad:0 stride:1, pad:0 stride:1, pad:0 stride:1, pad:0

Table G. Basic architecture of ResNet-50 [4] used in Table 5(a,c¢) of Sec. 4.3. “{.A|B}” means the parallel paths of the process .A and B
sharing the same input, and “Identical Mapping” indicates passing the input to the output as it is. As described in Sec. 4.3, we focus on
3 x 3 convolutions without operating on conv1.

ResNet-50 [4] with configuration (a,c)

input [224 % 224 x 3]

Conv-BN-ReLU: [1x 1x64x64], stride:1, pad:0

conv2-1 Conv-BN: [1 x1x 64 x 256], stride:1, pad:0| Conv-BN-ReLU: [3 x 3 x 64 x 64], stride:1, pad:1
Conv-BN: [1x1x64x256] stride:1, pad:0
Sum + ReLU
Conv-BN-ReLU: [1x1x 256 x64], stride:1, pad:0
conv2—x Identity Mapping | Conv-BN-ReLU: [3 x 3 x 64 x64], stride:1, pad:1 p x 2
Conv-BN: [1x1x64x256] stride:1, pad:0
Sum + ReLU

Conv-BN-ReLU: [1x1x256 x128], stride:1, pad:0

conv3-1 Conv-BN: [1x1x256 x 512], stride:2, pad:0| Conv-BN-ReLU: [3 x 3 x 128 x 128], stride:2, pad:1
Conv-BN: [1x1x128x512] stride:1, pad:0
Sum + ReLU
Conv-BN-ReLU: [1x1x512x128], stride:1, pad:0
conv3—x Identity Mapping | Conv-BN-ReLU: [3 x 3 x 128 x 128], stride:1, pad:1 » x 3
Conv-BN: [1x1x128x512] stride:1, pad:0
Sum + ReLU

Conv-BN-ReLU: [1x1x512x256], stride:1, pad:0

conv4-1 Conv-BN: [1x1x512x1024], stride:2, pad:0| Conv-BN-ReLU: [3 x 3 X 256 x 256], stride:2, pad:1
Conv-BN: [1x1x256x1024] stride:1, pad:0
Sum + ReLU
Conv-BN-ReLU: [1 x 1x1024 x 256], stride:1, pad:0
conv4—x Identity Mapping | Conv-BN-ReLU: [3 x 3 x 256 x 256], stride:1, pad:1 3 X 5
Conv-BN: [1x1x256x1024] stride:1, pad:0
Sum + ReLU

Conv-BN-ReLU: [1x1x1024 x 512], stride:1, pad:0
conv5-1 Conv-BN: [1x 1 x 1024 x 2048], stride:2, pad:0| Conv-BN-ReLU: [3x 3 x 512x512], stride:2, pad:1

Conv-BN: [1x1x512x2048] stride:1, pad:0
Sum + ReLU
Conv-BN-ReLU: [1x1x2048 x 512], stride:1, pad:0
conv5—x% Identity Mapping | Conv-BN-ReLU: [3x 3% 512x512], stride:1, pad:1 3 X 2
Conv-BN: [1x1x512x2048] stride:1, pad:0
Sum + ReLU

SoftMax

Table H. Improved architecture of ResNet-50 used in Table 5(b,d) by introducing BoW-based representation (Sec. 3.3) according to the
analysis in Sec. 4.3. The bow layer is applied to the concatenated features at conv4-6 of which dimensionality is reduced like PCA in
the BoW framework, while the layers of conv5—=« in Table G are removed; this model is actually composed of 43 convolution layers.

ResNet-50 [4] with configuration (b,d)

input 224 % 224 x 3]

Conv-BN-ReLU: [1x 1x64x64], stride:1, pad:0
conv2-1 Conv-BN: [1x1x64 x256], stride:1, pad:0| Conv-BN-ReLU: [3 x 3 x 64 x 64], stride:1, pad:1
Conv-BN: [1x1x64x256] stride:1, pad:0

Sum + ReLU

Conv-BN-ReLU: [1x 1 x 256 x64], stride:1, pad:0
conv2—x Identity Mapping | Conv-BN-ReLU: [3x 3 x 64 x 64], stride:1, pad:1 » x 2
Conv-BN: [1x1x64x256] stride:1, pad:0

Sum + ReLU

Conv-BN-ReLU: [1x1x256 x128], stride:1, pad:0
conv3-1 Conv-BN: [1x1x256 x 512], stride:2, pad:0| Conv-BN-ReLU: [3 x 3 x 128 x 128], stride:2, pad:1
Conv-BN: [1x1x128x512] stride:1, pad:0

Sum + ReLU
Conv-BN-ReLU: [1x1x512x128], stride:1, pad:0
conv3-—x Identity Mapping | Conv-BN-ReLU: [3 x 3 x 128 x 128], stride:1, pad:1 p x 3
Conv-BN: [1x1x128%x512] stride:1, pad:0

Sum + ReLU

Conv-BN-ReLU: [1x1x512x256], stride:1, pad:0
conv4-1 Conv-BN: [1x1x512x1024], stride:2, pad:0| Conv-BN-ReLU: [3 x 3 x 256 x 256], stride:2, pad:1
Conv-BN: [1x1x256x1024] stride:1, pad:0

Sum + ReLLU

Conv-BN-ReLU: [1x1x 1024 x 256], stride:1, pad:0
convd—x Identity Mapping | Conv-BN-ReLU: [3 x 3 x 256 x 256], stride:1, pad:1 3 x 4
Conv-BN: [1x1x256x1024] stride:1, pad:0

Sum + ReLU

Conv-BN-ReLU: [1x1x 1024 x 256], stride:1, pad:0
convid-6 Identity Mapping | Conv-BN-ReLU: [3 x 3 X256 x 256], stride:1, pad:1
Conv-BN: [1x1x256x1024] stride:1, pad:0

Concatenation + ReLU

Dimensionality . e .
o reduction - _________ Conv-BN-ReL.U: [11x2048x1024] stridez1, pad0
b Conv-BN-ReLU: [1x 1 x 1024 x 2048], stride:1, pad:0
ow

avg-pool: [7x7], stride:1, pad:0

SoftMax

Table I. Improved architecture of ResNet-50 used in Table 5(e) by enlarging the filter size in conv4 layers.

ResNet-50 [4] with configuration (e)

input [224 X224 x 3]

Conv-BN-ReLU: [1x1x64x64], stride:1, pad:0
conv2-1 Conv-BN: [1x1x 64 x256], stride:1, pad:0| Conv-BN-ReLU: [3 x 3 x 64 x 64], stride: 1, pad:1
Conv-BN: [1x1x64x256] stride:1, pad:0

Sum + ReLU

Conv-BN-ReLU: [1x 1x256 x 64], stride:1, pad:0
conv2-—x Identity Mapping | Conv-BN-ReLU: [3 X 3 x 64 x 64], stride:1, pad:1 X 2
Conv-BN: [1x1x64x256] stride:1, pad:0

Sum + ReLU

Conv-BN-ReLU: [1x1x256x128], stride:1, pad:0
conv3-1 Conv-BN: [1 x1x256 x 512], stride:2, pad:0| Conv-BN-ReLU: [3 x 3 x 128 x 128], stride:2, pad:1
Conv-BN: [1x1x128x512] stride:1, pad:0

Sum + ReLU

Conv-BN-ReLU: [1x1x512x128], stride:1, pad:0
conv3-—x Identity Mapping | Conv-BN-ReLU: [3 x 3 x 128 x 128], stride:1, pad:1 » x 3
Conv-BN: [1x1x128x512] stride:1, pad:0

Sum + ReLU

Conv-BN-ReLU: [1x1x512x256], stride:1, pad:0
conv4-1 Conv-BN: [1x1x512x1024], stride:2, pad:0| Conv-BN-ReLU: [5 x 5 x 256 x 256], stride:2, pad:2
Conv-BN: [1x1x256x1024] stride:1, pad:0

Sum + ReLU

Conv-BN-ReLU: [1x 1x 1024 x 256], stride:1, pad:0
convi—x Identity Mapping | Conv-BN-ReLU: [5 X 5 x 256 x 256], stride:1, pad:2 » x 4
Conv-BN: [1x1x256x1024] stride:1, pad:0

Sum + ReLLU

Conv-BN-ReLU: [1 x 1x1024 x 256], stride:1, pad:0
conv4-6 Identity Mapping | Conv-BN-ReLU: [5 x5 x 256 x 256], stride:1, pad:2
Conv-BN: [1x1x256x1024] stride:1, pad:0

Concatenation + ReLU

" Dimensionality o
__ reduction T DA b e e e

Conv-BN-ReLU: [1x 1 x 1024 x 2048], stride:1, pad:0
avg-pool: [7x7], stride: 1, pad:0

SoftMax

Table J. Improved architecture of ResNet-50 used in Table 5(f) by adding 5 x 5 convolution in the residual path at conv4 layers. The
number of channels which the 5 x 5 convolution receives is half of that in the corresponding 3 x 3 convolution.

ResNet-50 [4] with configuration (f)

input [224 x 224 x 3]

Conv-BN-ReLU: [1x1x64x64], stride:1, pad:0

conv2-1 Conv-BN: [1 X1 x 64 x 256], stride:1, pad:0| Conv-BN-ReLU: [3 X 3 X 64 x 64], stride:1, pad:1
Conv-BN: [1 x1x64x 256] stride:1, pad:0
Sum + ReLU
Conv-BN-ReLU: [1 x 1 x 256 x 64], stride:1, pad:0
conv2-—* Identity Mapping | Conv-BN-ReLU: [3 x 3 X 64 X 64], stride:1, pad:1 p X 2
Conv-BN: [1x1x64x256] stride:1, pad:0
Sum + ReLU
Conv-BN-ReLU: [1x1x256 x 128], stride:1, pad:0
conv3-1 Conv-BN: [1x 1 %256 x 512], stride:2, pad:0| Conv-BN-ReLU: [3 x 3 x 128 x 128], stride:2, pad:1
Conv-BN: [1x1x128%x512] stride:1, pad:0
Sum + ReLU
Conv-BN-ReLU: [1x1x512x128], stride:1, pad:0
conv3—x* Identity Mapping | Conv-BN-ReLU: [3 x 3 x 128 x 128], stride:1, pad:1 » x 3
Conv-BN: [1x1x128%x512] stride:1, pad:0
Sum + ReLU
Conv-BN: Conv-BN-ReLU: [1x1x512x256], stride:1, pad:0| Conv-BN-ReLU: [1x 1x512x 128], stride:1, pad:0
conv4-1 [1x1x512x1024],| Conv-BN-ReLU: [3 x 3 x 256 X 256], stride:2, pad:1{Conv-BN-ReLU: [5 x 5 x 128 x 128], stride:2, pad:2
stride:2, pad:0 Conv-BN: [1Xx1x256x%1024] stride:1, pad:0|Conv-BN: [1x1x128x1024] stride:1, pad:0
Sum + ReLU
Identity | Conv-BN-ReLU: [1 x1x 1024 x 256], stride:1, pad:0|Conv-BN-ReLU: [1 x 1 x 1024 x 128], stride:1, pad:0
convi-x Mapping | Conv-BN-ReLU: [3 x 3 X 256 X 256], stride:1, pad:1| Conv-BN-ReLU: [5 x 5 x 128 x 128], stride:1, pad:2 » X 4
Conv-BN: [1x1x256x1024] stride:1, pad:0| Conv-BN: [1x1x128x1024] stride:1, pad:0
Sum + ReLU
Identity | Conv-BN-ReLU: [1x 1x 1024 x 256], stride:1, pad:0|Conv-BN-ReLU: [1 x 1 x 1024 x 128], stride:1, pad:0
conv4-6 Mapping | Conv-BN-ReLU: [3 x 3 x 256 X 256], stride:1, pad:1| Conv-BN-ReLU: [5 x 5 x 128 x 128], stride:1, pad:2
Conv-BN: [1x1x256x1024] stride:1, pad:0| Conv-BN: [1x1x128x1024] stride:1, pad:0
Concatenation + ReLU
Dimensionality o anco o o
Credvetion ConvBNReLU: [1x1x3072x1024), smidertypad0 .
Conv-BN-ReLU: [1 X 1% 1024 x 2048], stride:1, pad:0
e avg-pool: [7x17], stride: 1, pad:0

SoftMax

Table K. Improved architecture of ResNet-50 used in Table 5(g) by adding 5 x 5 convolution at conv2~conv4 layers. The number of
channels which the 5 x 5 convolution receives is half of that in the corresponding 3 X 3 convolution.

ResNet-50 [4] with configuration (g)

input [224 x 224 x 3]

Conv-BN: Conv-BN-ReLU: [1x1x64x64], stride:1, pad:0| Conv-BN-ReLU: [1 x 1x 64 x 32], stride:1, pad:0
conv2-1 [1x1x64x256],| Conv-BN-ReLU: [3x3x 64 x 64], stride:1, pad:1|Conv-BN-ReLU: [5 x5 x 32 x 32], stride:1, pad:2
stride: 1, pad:0 Conv-BN: [1x1x64x256] stride:1, pad:0|Conv-BN: [1x1x32x256] stride:1, pad:0
Sum + ReLU
Identity | Conv-BN-ReLU: [1x1x 256 x 64], stride:1, pad:0|Conv-BN-ReLU: [1 x 1 x 256 x 32], stride:1, pad:0
conv2-x* Mapping | Conv-BN-ReLU: [3x3x64x64], stride:1, pad:1| Conv-BN-ReLU: [5x 5 x 32x 32|, stride:1, pad:2 » X 2
Conv-BN: [1x1x64x256] stride:1, pad:0| Conv-BN: [1x1x32x256] stride:1, pad:0
Sum + ReLU
Conv-BN: Conv-BN-ReLU: [1x1x256 x 128], stride:1, pad:0|Conv-BN-ReLU: [1 x 1 x 256 X 64], stride:1, pad:0
conv3-1 [1x1x256%512],| Conv-BN-ReLU: [3 x 3 x 128 x 128], stride:2, pad:1| Conv-BN-ReLU: [5 x 5 x 64 X 64], stride:2, pad:2
stride:2, pad:0 Conv-BN: [1x1x128x512] stride:1, pad:0| Conv-BN: [1x1x64x512] stride:1, pad:0
Sum + ReLU
Identity | Conv-BN-ReLU: [1x1x512x128], stride:1, pad:0{Conv-BN-ReLU: [1x 1 X512 x 64], stride:1, pad:0
conv3-—x* Mapping | Conv-BN-ReLU: [3 x 3 x 128 x 128], stride:1, pad:1| Conv-BN-ReLU: [5 x 5 X 64 X 64], stride:1, pad:2 p X 3
Conv-BN: [1x1x128%x512] stride:1, pad:0| Conv-BN: [1x1x64x512] stride:1, pad:0
Sum + ReLU
Conv-BN: Conv-BN-ReLU: [1x1x512x256], stride:1, pad:0| Conv-BN-ReLU: [1x 1x512x 128], stride:1, pad:0
conv4-1 [1x1x512x1024],| Conv-BN-ReLU: [3 x 3 x 256 X 256], stride:2, pad:1{Conv-BN-ReLU: [5 x5 x 128 x 128], stride:2, pad:2
stride:2, pad:0 Conv-BN: [1x1x256x%1024] stride:1, pad:0|Conv-BN: [1x1x128x1024] stride:1, pad:0
Sum + ReLU
Identity | Conv-BN-ReLU: [1 x1x 1024 x 256], stride:1, pad:0|Conv-BN-ReLU: [1 x 1 x 1024 x 128], stride:1, pad:0
convi-x Mapping | Conv-BN-ReLU: [3 x 3 X 256 X 256], stride:1, pad:1| Conv-BN-ReLU: [5 x 5 x 128 x 128], stride:1, pad:2 » X 4
Conv-BN: [1x1x256x1024] stride:1, pad:0| Conv-BN: [1x1x128x1024] stride:1, pad:0
Sum + ReLU
Identity | Conv-BN-ReLU: [1x1x 1024 x 256], stride:1, pad:0|Conv-BN-ReLU: [1 x 1 x 1024 x 128], stride:1, pad:0
conv4-6 Mapping | Conv-BN-ReLU: [3 x 3 x 256 X 256], stride:1, pad:1| Conv-BN-ReLU: [5 x 5 x 128 x 128], stride:1, pad:2
Conv-BN: [1x1%x256x1024] stride:1, pad:0| Conv-BN: [1x1x128x1024] stride:1, pad:0
Concatenation + ReLU
Dimensionality o n L anco o
Credvetion Conv-BNReLU: [1x1x3072x1024), stidestopadd
Conv-BN-ReLU: [1x 1% 1024 x 2048], stride:1, pad:0
bow 5 Al :
avg-pool: [7x17], stride: 1, pad:0

SoftMax

Table L. Improved architecture of ResNet-50 used in Table 5(h) by adding 5 x 5 convolution at conv2~conv4 layers. The number of
channels which the 5 X 5 convolution receives is the same as that in the corresponding 3 X 3 convolution.

ResNet-50 [4] with configuration (/)

input [224 x 224 x 3]

Conv-BN: Conv-BN-ReLU: [1x1x64x64], stride:1, pad:0| Conv-BN-ReLU: [1 x 1x 64 x 64], stride:1, pad:0
conv2-1 [1x1x64x256],| Conv-BN-ReLU: [3Xx3x 64 x 64], stride:1, pad:1|Conv-BN-ReLU: [5 X 5 X 64 X 64], stride:1, pad:2
stride: 1, pad:0 Conv-BN: [1x1x64x256] stride:1, pad:0|Conv-BN: [1x1x64x256] stride:1, pad:0
Sum + ReLU
Identity | Conv-BN-ReLU: [1x 1x 256 x 64], stride:1, pad:0|Conv-BN-ReLU: [1 x 1 x 256 x 64], stride:1, pad:0
conv2-—x* Mapping | Conv-BN-ReLU: [3x 3x64x64], stride:1, pad:1| Conv-BN-ReLU: [5 x5 x 64 x 64], stride:1, pad:2 » X 2
Conv-BN: [1x1x64x256] stride:1, pad:0| Conv-BN: [1x1x64x256] stride:1, pad:0
Sum + ReLU
Conv-BN: Conv-BN-ReLU: [1x 1x256 x 128], stride:1, pad:0| Conv-BN-ReLU: [1x 1 x 256 x 128], stride:1, pad:0
conv3-1 [1x1x256x512],| Conv-BN-ReLU: [3 x 3 x 128 x 128], stride:2, pad:1|Conv-BN-ReLU: [5 x5 x 128 x 128], stride:2, pad:2
stride:2, pad:0 Conv-BN: [1 X 1x128 x 512} stride:1, pad:0| Conv-BN: [1 x1x 128 x 512] stride: 1, pad:0
Sum + ReLU
Identity | Conv-BN-ReLU: [1x1x512x128], stride:1, pad:0| Conv-BN-ReLU: [1 x 1 x 512 x128], stride:1, pad:0
conv3—x Mapping | Conv-BN-ReLU: [3 x 3 x 128 x 128], stride: 1, pad:1|Conv-BN-ReLU: [5 x5 x 128 x 128], stride:1, pad:2 » X 3
Conv-BN: [1x1x128%512] stride:1, pad:0| Conv-BN: [1x1x128%x512] stride:1, pad:0
Sum + ReLU
Conv-BN: Conv-BN-ReLU: [1x1x512x256], stride:1, pad:0| Conv-BN-ReLU: [1x 1 x 512 x 256], stride:1, pad:0
conv4-1 [1x1x512x1024],| Conv-BN-ReLU: [3 x 3 x 256 X 256], stride:2, pad:1{Conv-BN-ReLU: [5 X 5 x 256 x 256], stride:2, pad:2
stride:2, pad:0 Conv-BN: [1Xx1x256x%1024] stride:1, pad:0|Conv-BN: [1x1x256x1024] stride:1, pad:0
Sum + ReLU
Identity | Conv-BN-ReLU: [1 x1x 1024 x 256], stride:1, pad:0|Conv-BN-ReLU: [1 x 1 x 1024 x 256], stride:1, pad:0
convi-x Mapping | Conv-BN-ReLU: [3 x 3 X 256 X 256], stride:1, pad:1| Conv-BN-ReLU: [5 x 5 x 256 x 256], stride:1, pad:2 » X 4
Conv-BN: [1x1x256x1024] stride:1, pad:0| Conv-BN: [1x1x256x1024] stride:1, pad:0
Sum + ReLU
Identity | Conv-BN-ReLU: [1x 1x 1024 x 256], stride:1, pad:0|Conv-BN-ReLU: [1 x 1 x 1024 x 256], stride:1, pad:0
conv4-6 Mapping | Conv-BN-ReLU: [3 x 3 x 256 x 256], stride:1, pad:1| Conv-BN-ReLU: [5 X 5 X 256 x 256], stride:1, pad:2
Conv-BN: [1x1x256x1024] stride:1, pad:0| Conv-BN: [1x1x256x1024] stride:1, pad:0

Concatenation + ReLU

Dimensionality

Creduction ComvBNReLU: |Lx1x3072x1024) siderlpat
Conv-BN-ReLU: [1 X 1% 1024 x 2048], stride:1, pad:0
bow o - :
avg-pool: [7x17], stride: 1, pad:0

SoftMax

References

(1]
(2]

(3]

(4]
(5]

(6]
(7]
(8]
(9]
(10]

[11]

[12]

MatConvNet pre-trained models. http://www.v1lfeat.org/matconvnet/pretrained/. Accessed: 2017-1-19.

K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the devil in the details: Delving deep into convolutional nets.
BMVC, 2014.

W. T. Freeman and E. H. Adelson. The design and use of steerable filters. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 13(9):891-906, 1991.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, pages 770-778, 2016.

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. Journal of
Machine Learning Research, 37:448-456, 2015.

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture
for fast feature embedding. arXiv, 1408.5093, 2014.

A. Krizhevsky, 1. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, pages
1097-1105, 2012.

V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann machines. In ICML, pages 807-814, 2010.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409.1556, 2014.
N. Srivastava, G. Hinton, A. Krizhevsky, 1. Sutskever, and R. Salakhutdinov. Dropout : A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Research, 15:1929-1958, 2014.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with
convolutions. In CVPR, pages 1-9, 2015.

A. Vedaldi and K. Lenc. MatConvNet — convolutional neural networks for matlab. In ACM MM, 2015.

http://www.vlfeat.org/matconvnet/pretrained/

