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1. Optimization for BORMIR

In Section 3.4 of the main script, we present that the original problem can be decomposed into two subproblems. Here,
we show the detailed optimization procedures.

1.1. The Proposed BORMIR

In our BORMIR model, we obtain the intensity estimator by solving the following problem
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where a; = Am;, B, = A;frul-, and A\, > 0,k = 0,1,2, 3,4, are the hyperparameters. Items in problem (1), including the
peak bag label, the valley bag label, the ordinal relevance, the smoothness of intensity, the smoothness of relevance, are listed
as follows
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1.2. The Optimization of BORMIR

Let ; = [n,; ;] € R*™ by concatenating 7, and p,. To solve problem (1), we develop an iterative optimization
algorithm under the alternating minimization framework [2].

Optimize w, given {0;}Y, Given {6,}}Y |, a; and 3, can be computed through a; = A;n, and 3; = AT ;. Problem (1)
becomes an unconstrained problem with respect to w. The subproblem is
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where X = [Biay, Boas, ..., Byay], X = [B18;,B2f8,, ..., ByBy], H = XXT + N XX + ML+ A and f =
—XY — MXYo. Y = [y1,92,yn]T and Yo = [19,49, ...,y%]7 are the peak and valley bag label vectors of the N
training segments. I is an identity matrix and H is a positive semi-definite matrix. The subproblem is a standard unconstrained
quadratic programming problem. The closed-form solution is
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Optimize {0,}}Y |, given w Given w, problem (1) can be decomposed into independent subproblems with respect to each
6,. Each problem is a quadratic programming problem with linear constraints. Let F; = D, — C,. The objective is
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LetM,; = wIB,A,; and N; = WTBZ-A;TF. It becomes
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The linear constraints can be rewritten as
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The subproblem becomes
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The subproblem is a standard quadratic programming problem with linear constraints, which can be solved efficiently
with existing solvers. In this paper, we adopt the interior-point algorithm [8] to solve problem (6).

2. Relevance analysis

The relevance is learned only for training frames and is not involved during testing. Hence, we analyze relevance on
the training set of FERA 2015. We studied (i) the correlation between relevance and the ground truth intensity and (ii) the
correlation between relevance and the output of a simple classifier. We use logistic regression model as the classifier which is
trained to tell peak frames apart from valley frames. PCC is used as the measure. Rel: the ‘peak relevance’, MO: the intensity
prediction by our model, CO: the output probability of the classifier, GT: the ground truth. As shown in Table 1, Rel has the
correlation with GT and CO to some extent, but is not strongly correlated. Because the relevance is the importance of frames
in a segment, which is not equivalent to the intensity label. However, MO and CO are highly correlated with GT since they
are directly associated with the intensity.

Table 1. Correlation analysis on FERA 2015. PCC is the measure.
| AU | 6 [ 10 | 12 | 14 | 17 |
Rel & GT 0.28 0.26 0.39 0.34 0.36
Rel & CO 0.26 0.26 0.37 0.18 0.31

MO & GT 0.84 0.81 0.92 0.64 0.67
CO & GT 0.62 0.61 0.69 0.47 0.58

3. Splitting of Sequences and Arrangement of frame order

In Section 3 of the main script, we describe the splitting of sequences. Here, we give a detailed illustration. We use the
definition of ‘peak’ and ‘valley’ from [6] which differs from onset/apex/offset. Given peak/valley frames, Fig. 1(a) gives an
illustration of splitting a sequence into segments. We have three types of segments: (i) from valley to peak, (ii) from peak to
valley and (iii) constant intensity. We rearrange only the frame order of segments of type (ii) as shown in Fig. 1(b).
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Figure 1. (a) Segment splitting. (b) Order arrangement.

4. AU intensity estimation on the PAIN database

In Section 4.2 of the main script, to make the comparison to MI-DOREF, we perform pain intensity estimation on the PAIN
database. We also present the performance of different methods for AU intensity estimation on PAIN. The results are shown
in Table 2. Our method outperforms the competing methods in PCC and ICC. The MAE of our method is the second best.
Though LT is slightly better than our method in MAE, it performs poor in PCC and ICC.



Table 2. Comparison of different methods for AU intensity estimation on the PAIN database. Bracketed and bold numbers represent the
best performance; bold numbers represent the second best.

AU ‘ 4 6 7 9 10 12 20 25 26 Avg

SOVR[I] | .640 521 241 .137 .535 561  .179  .521 -.054  .365
RVR[3] | [655] .559 379  .188 [.570] [.595] [.334] [.538] -063 .417

LT [4] -071 173 068 000 .000 -013 045 056 214 052
DSRVM [5] | -012 446 314 074 495 359 -099 213 -119 .186
PCC | MIR[7] 357 479 247 035 012 484 169 490 -004 252
OSVR[9] | .573 541 247 327 527 593 212 503 -114 379
BORMIR | 582 [.564] .490 [495] 435 585 278 507 .118  [.450]

SOVR [1] 522 .508 212 125 437 .554 137 [511]  -.043 .329
RVR [3] [.555] [.538] .315 188  [447] 556 [.236] 499 -.041 366
LT [4] .043 .075 005 -039 -.005 .040 .039 011 074 .027
DSRVM [5] | -.013  .400 130 -013 133 .249 -.022 186 -.017 115
Icc MIR [7] 277 447 .196 .052 .015 458 .105 457 -.017 221
OSVR [9] 470 529 .236 274 413 [.578] 181 481 -.107 .340
BORMIR 445 501 [407] [.466] 315 .535 211 479 [.097] [.384]

SOVR [1] 2.00 1.12 2.54 2.61 1.76 1.03 243 1.03 222 1.86

RVR [3] 1.44 1.00 1.60 1.83 1.38 0.96 136  [0.91] 1.29 1.31

LT [4] [1.43] 1.15 [1.19] [1.38] 1.31 1.12  [1.01] 1.20 [1.00] [1.20]
DSRVM [5] | 1.86 1.02 1.22 1.84 [1.07] 1.06 1.56 1.06 1.39 1.34
MAE MIR [7] 2.80 1.11 3.06 5.33 5.25 0.94 3.04 1.30 2.66 2.83
OSVR [Y] 1.87 1.05 2.14 2.03 2.00 1.00 2.13 1.05 1.89 1.68
BORMIR 1.47 [094] 1.31 1.66 1.64 [093] 1.04 1.09 1.06 1.24
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