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1. Optimization for BORMIR
In Section 3.4 of the main script, we present that the original problem can be decomposed into two subproblems. Here,

we show the detailed optimization procedures.

1.1. The Proposed BORMIR

In our BORMIR model, we obtain the intensity estimator by solving the following problem

min
w,{ηi,µi}Ni=1

L(w, {αi}Ni=1,D) + λ0L0(w, {βi}Ni=1,D)
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2
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s.t. (ηi,µi) ∈ Sη,µ(ηi,µi), i = 1, 2, ..., N, (1)

where αi = Aiηi, βi = AT
i µi, and λk ≥ 0, k = 0, 1, 2, 3, 4, are the hyperparameters. Items in problem (1), including the

peak bag label, the valley bag label, the ordinal relevance, the smoothness of intensity, the smoothness of relevance, are listed
as follows
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and

Sη,µ(ηi,µi) ={ηi ∈ Rni ,µi ∈ Rni |ηi ≥ 0,µi ≥ 0,

eTi (Aiηi) = 1, eTi (A
T
i µi) = 1,

Vi(Aiηi +AT
i µi) = 0}.

1.2. The Optimization of BORMIR

Let θi = [ηi;µi] ∈ R2ni by concatenating ηi and µi. To solve problem (1), we develop an iterative optimization
algorithm under the alternating minimization framework [2].

Optimize w, given {θi}Ni=1 Given {θi}Ni=1, αi and βi can be computed through αi = Aiηi and βi = AT
i µi. Problem (1)

becomes an unconstrained problem with respect to w. The subproblem is

min
w
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where X = [B1α1,B2α2, ...,BNαN ], X̃ = [B1β1,B2β2, ...,BNβN ], H = XXT + λ0X̃X̃T + λ1L + λ4I and f =
−XY − λ0X̃Y0. Y = [y1, y2, ..., yN ]T and Y0 = [y01 , y

0
2 , ..., y

0
N ]T are the peak and valley bag label vectors of the N

training segments. I is an identity matrix and H is a positive semi-definite matrix. The subproblem is a standard unconstrained
quadratic programming problem. The closed-form solution is

w∗ = −H−1f
= [XXT + λ0X̃X̃T + λ1L+ λ4I]

−1(XY + λ0X̃Y0) (4)

Optimize {θi}Ni=1, given w Given w, problem (1) can be decomposed into independent subproblems with respect to each
θi. Each problem is a quadratic programming problem with linear constraints. Let Fi = Di −Ci. The objective is
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i . It becomes
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The linear constraints can be rewritten as
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The subproblem becomes

min
θi

1

2
θTi Hθi + fTθi

s.t. θi ∈ Sθ(θi) (6)

The subproblem is a standard quadratic programming problem with linear constraints, which can be solved efficiently
with existing solvers. In this paper, we adopt the interior-point algorithm [8] to solve problem (6).

2. Relevance analysis
The relevance is learned only for training frames and is not involved during testing. Hence, we analyze relevance on

the training set of FERA 2015. We studied (i) the correlation between relevance and the ground truth intensity and (ii) the
correlation between relevance and the output of a simple classifier. We use logistic regression model as the classifier which is
trained to tell peak frames apart from valley frames. PCC is used as the measure. Rel: the ‘peak relevance’, MO: the intensity
prediction by our model, CO: the output probability of the classifier, GT: the ground truth. As shown in Table 1, Rel has the
correlation with GT and CO to some extent, but is not strongly correlated. Because the relevance is the importance of frames
in a segment, which is not equivalent to the intensity label. However, MO and CO are highly correlated with GT since they
are directly associated with the intensity.

Table 1. Correlation analysis on FERA 2015. PCC is the measure.

AU 6 10 12 14 17
Rel & GT 0.28 0.26 0.39 0.34 0.36
Rel & CO 0.26 0.26 0.37 0.18 0.31
MO & GT 0.84 0.81 0.92 0.64 0.67
CO & GT 0.62 0.61 0.69 0.47 0.58

3. Splitting of Sequences and Arrangement of frame order
In Section 3 of the main script, we describe the splitting of sequences. Here, we give a detailed illustration. We use the

definition of ‘peak’ and ‘valley’ from [6] which differs from onset/apex/offset. Given peak/valley frames, Fig. 1(a) gives an
illustration of splitting a sequence into segments. We have three types of segments: (i) from valley to peak, (ii) from peak to
valley and (iii) constant intensity. We rearrange only the frame order of segments of type (ii) as shown in Fig. 1(b).

segment A seg. B seg. C seg. D seg. E seg. F

Peak

Valley

peak -> valley valley -> peak

(a) (b)
Figure 1. (a) Segment splitting. (b) Order arrangement.

4. AU intensity estimation on the PAIN database
In Section 4.2 of the main script, to make the comparison to MI-DORF, we perform pain intensity estimation on the PAIN

database. We also present the performance of different methods for AU intensity estimation on PAIN. The results are shown
in Table 2. Our method outperforms the competing methods in PCC and ICC. The MAE of our method is the second best.
Though LT is slightly better than our method in MAE, it performs poor in PCC and ICC.



Table 2. Comparison of different methods for AU intensity estimation on the PAIN database. Bracketed and bold numbers represent the
best performance; bold numbers represent the second best.

AU 4 6 7 9 10 12 20 25 26 Avg

PCC

SOVR [1] .640 .521 .241 .137 .535 .561 .179 .521 -.054 .365
RVR [3] [.655] .559 .379 .188 [.570] [.595] [.334] [.538] -.063 .417
LT [4] -.071 .173 .068 .000 .000 -.013 .045 .056 .214 .052

DSRVM [5] -.012 .446 .314 .074 .495 .359 -.099 .213 -.119 .186
MIR [7] .357 .479 .247 .035 .012 .484 .169 .490 -.004 .252

OSVR [9] .573 .541 .247 .327 .527 .593 .212 .503 -.114 .379
BORMIR .582 [.564] .490 [.495] .435 .585 .278 .507 .118 [.450]

ICC

SOVR [1] .522 .508 .212 .125 .437 .554 .137 [.511] -.043 .329
RVR [3] [.555] [.538] .315 .188 [.447] .556 [.236 ] .499 -.041 .366
LT [4] .043 .075 .005 -.039 -.005 .040 .039 .011 .074 .027

DSRVM [5] -.013 .400 .130 -.013 .133 .249 -.022 .186 -.017 .115
MIR [7] .277 .447 .196 .052 .015 .458 .105 .457 -.017 .221

OSVR [9] .470 .529 .236 .274 .413 [.578] .181 .481 -.107 .340
BORMIR .445 .501 [.407] [.466] .315 .535 .211 .479 [.097] [.384 ]

MAE

SOVR [1] 2.00 1.12 2.54 2.61 1.76 1.03 2.43 1.03 2.22 1.86
RVR [3] 1.44 1.00 1.60 1.83 1.38 0.96 1.36 [0.91] 1.29 1.31
LT [4] [1.43] 1.15 [1.19] [1.38] 1.31 1.12 [1.01] 1.20 [1.00] [1.20]

DSRVM [5] 1.86 1.02 1.22 1.84 [1.07] 1.06 1.56 1.06 1.39 1.34
MIR [7] 2.80 1.11 3.06 5.33 5.25 0.94 3.04 1.30 2.66 2.83

OSVR [9] 1.87 1.05 2.14 2.03 2.00 1.00 2.13 1.05 1.89 1.68
BORMIR 1.47 [0.94] 1.31 1.66 1.64 [0.93] 1.04 1.09 1.06 1.24
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