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Our novel monocular reconstruction approach estimates high-quality facial geometry, skin reflectance (including facial hair)
and incident illumination at over 250 Hz. A trainable multi-level face representation is learned jointly with the feed forward
inverse rendering network. End-to-end training is based on a self-supervised loss that does not require dense ground truth.

In this supplemental document we provide more details
on our approach. More specifically, we discuss robust train-
ing (Sec. 1) of our architecture, we provide the runtime
(Sec. 2) for training and testing, we discuss different cor-
rective spaces that we tested (Sec. 3), we perform a study
(Sec. 4) on the number of required corrective parameters,
and show more results (Sec. 5).

Please note that all shown colored reconstructions of our
approach are not textured with the input image, but show
the color due to the reconstructed reflectance and/or illumi-
nation, for e.g. see Fig. 1. The underlying model is a multi-
level face model with a base level employing a 3DMM
(Base), and a final level that adds optimal learned per-vertex
shape and reflectance correctives (Final). Skin reflectance
is represented with a low-dimensional coefficient vector of
size 580 = 500 + 80 (500 coefficients for the correctives
and 80 coefficients for the 3DMM). Thus, skin reflectance
is stored using only 2.3KB (one float per coefficient). The
shape is represented based on a low-dimensional vector of
size 644 = 500 + 80 + 64 (500 coefficients for the correc-
tives, 80 coefficients for the shape identity in the 3DMM,
and 64 blendshape coefficients). Thus, the geometry is also
stored using only 2.6KB (one float per coefficient). In total,
the complete reconstruction is efficiently represented with
less than 5KB. This can be exploited for compression, i.e., if
the reconstruction has to be transmitted over the internet.

1. Training
In the following, we describe how we train our novel

architecture end-to-end based on a two stage training strat-

Figure 1. Jointly learning a multi-level model improves the
estimated geometry and reflectance compared to the underlying
3DMM on the coarse base level. Note the better aligning nose,
lips and the reconstructed facial hair.

egy. Training the face regressor and the corrective space
jointly, in one go, turned out to be challenging. For ro-
bust training, we first pretrain our network up to the base
level for 200k iterations with a learning rate of 0.01. We
implemented our approach using Caffe [3]. Training is



based on AdaDelta with a batch size of 5. We use fixed
weights w• in all our experiments. For training the base
level we use the following weights wphoto = 1.9, wreg =
0.00003, wrstd = 0.002, wsmo = 0.0, wref = 0.0, wglo = 0.0
and wsta = 0.0. In addition, we only use the photomet-
ric alignment term on the base level. Afterwards, we fine-
tune our complete network for 190k iterations end-to-end
with a learning rate of 0.001 for the base level network,
0.005 for the geometry correctives network and 0.01 for the
reflectance correctives network. For finetuning, in all our
experiments we instantiate our loss based on the following
weights wphoto = 0.2, wreg = 0.003, wrstd = 0.002, wsmo =
3.2 · 104, wref = 13, wglo = 80, wsta = 0.08, and use 500
correctives for both geometry and reflectance. Please note,
the illumination estimate for rendering the base and final
model is not shared between the two levels, but indepen-
dently regressed. This is due to the fact that a different
illumination estimate might be optimal for the coarse and
final reconstruction due to the shape and skin reflectance
correctives. During finetuning, all weights associated with
the correctives receive a higher learning rate (×100) than
the pretrained layers. We found that this two stage strategy
enables robust and efficient training of our architecture.

2. Runtime Performance

We evaluate the runtime performance of our approach
on an Nvidia GTX TITAN Xp graphics card. Training our
novel monocular face regressor takes 16 hours. A forward
pass of our trained convolutional face parameter regressor
takes less than 4 ms. Thus, our approach performs monoc-
ular face reconstruction at more than 250 Hz.

3. Evaluation of the Corrective Space

Our corrective space is based on (potentially non-linear)
mappings F• : RC → R3N that map the C-dimensional
corrective parameter space onto per-vertex corrections in
shape or reflectance. The mapping F•(δ•|Θ•) is a function
of δ• ∈ RC that is parameterized by Θ•. In the linear case,
one can interpret Θ• as a matrix that spans a subspace of the
variations, and δ• is the coefficient vector that reconstructs
a given sample using the basis. Let Li(δ) = Miδ + bi be
an affine/linear mapping and Θ

[i]
• stack all trainable param-

eters, i.e., the trainable matrix Mi and the trainable offset
vector bi. We tested different linear and non-linear correc-
tive spaces, see Fig. 2. The affine/linear model (Linear) is
given as:

F•(δ•|Θ[0]
• ) = L0(δ•) . (1)

However, in general we do not assume F• to be
affine/linear. For this evaluation, given the non-linear func-
tion Ψ, which in our case is a ReLU non-linearity, we de-
fine a corrective model with two affine/linear layers and one

Figure 2. Comparison of linear and non-linear corrective spaces.

Figure 3. The affine/linear model obtains a lower photometric re-
rendering error than the two tested non-linear corrective spaces.
Thus, we use the affine/linear model in all our experiments.

non-linearity (One Non-Linearity):

F•(δ•|Θ[0]
• ,Θ

[1]
• ) = L1(Ψ(L0(δ•))) . (2)

In addition, we also define a corrective model with three
affine/linear layers and two non-linearities (Two Non-
Linearities):

F•(δ•|Θ[0]
• ,Θ

[1]
• ,Θ

[2]
• ) = L2(Ψ(L1(Ψ(L0(δ•))))) . (3)

As can be seen in Fig. 2, the results obtained by the
affine/linear and non-linear models are visually quite sim-
ilar. The affine/linear model obtains a lower photometric
re-rendering error, see Fig. 3. Thus, we decided for the sim-
pler affine/linear model and use it in all our experiments.



Figure 4. We trained our network with C = 0, 100, 250 and
500 corrective parameters for shape and reflectance. Our networks
with correctives significantly improve upon the baseline network
that only uses the 3DMM (C = 0) in terms of the photometric
re-rendering error. The corrective basis with C = 500 parameters
achieves the lowest photometric re-rendering error. Thus, we use
this network for all further experiments.

Figure 5. Removing reflectance sparsity leads to shading infor-
mation being wrongly explained by reflectance variation.

4. Additional Evaluation
We also report the photometric re-rendering error on

a test set (2k images) for a varying number of correc-
tive parameters. To this end, we follow our two-stage
training schedule and trained our network with C =
0, 100, 250 and 500 corrective parameters for shape and re-
flectance, see Fig. 4. Our networks with correctives signifi-
cantly improve upon the baseline network that only uses the
3DMM (C = 0) in terms of the photometric re-rendering
error. The best results in terms of the lowest photometric re-
rendering error are obtained by our network with C = 500
additional corrective parameters for shape and reflectance.
Thus, we use this network for all further experiments.

We also performed an ablation study to evaluate the con-
tribution on reconstruction quality of the different objec-
tives of our self-supervised loss function. More specifically,
we evaluated two different variations of our self-supervised
loss: 1) We removed all corrective shape regularizers and
2) We removed all reflectance sparsity priors. Removing

Figure 6. Both local sparsity and global constancy terms help in
obtaining plausible reflectance estimates.

Figure 7. Both corrective smoothness and stabilization terms help
in obtaining nice geometry estimates.

the shape regularizers (stabilization and smoothness) leads
to a complete failure during training, since all corrective
per-vertex displacements are independent and thus the re-
construction problem is severely underconstrained. If the
reflectance sparsity priors (local and global) are removed,
the network can still be trained and the overlayed recon-
structions look plausible, see Fig. 5, but all shading infor-
mation is wrongly explained by reflectance variation. Thus,
both the used shape and reflectance priors are necessary
and drastically improve reconstruction quality. An ablative
analysis of the individual terms of the reflectance and shape
regularizers can be found in Figs. 6 and 7. We also evalu-
ate our estimated reflectance on synthetic images. We gen-
erate a synthetic training corpus using 80 reflectance vec-
tors of the 3DMM. We only allow the base model of the
network to regress 40 reflectance parameters, which allows
the final model to learn the reflectance correctives between
the base model and the ground truth, see Fig. 8. We also
perform a quantitative evaluation by computing per-pixel
RGB distances between the rendered reflectance image and



Figure 8. Our estimated reflectance is close to the ground truth
reflectance for synthetic images.

the ground truth (we compensate for global shifts in re-
flectance). We render these images using the mean face
geometry in a canonical pose. We obtain an error of 0.072
(averaged over 1k test images), which shows the accuracy
of our predictions.

5. Additional Results and Comparisons
We show more results (Fig. 13) and comparisons to cur-

rent optimization-based (Figs. 10 and 11) and learning-
based (Figs. 14 and 15) state-of-the-art approaches. Note,
in the comparison to Tewari et al. [7], we compare to their
weakly supervised training, which, similar to our approach,
uses a sparse set of facial landmarks for supervision. Our
approach obtains high reconstruction quality and compares
favorably to all of these state-of-the-art techniques. In par-
ticular, it is able to reconstruct colored surface reflectance
and it robustly handles even challenging cases, such as oc-
clusions by facial hair and make-up. For a detailed discus-
sion of the differences to the other approaches we refer to
the main document. In addition, we show more examples of
limitations (Fig. 12), such as external occluders, which are
baked into the recovered model. We also show more exam-
ples of the photometric re-rendering error (Fig. 9) and show
that the corrective space improves the regressed shape and
reflectance estimate (Fig. 1).
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P. Pérez, and C. Theobalt. Reconstruction of personalized 3D
face rigs from monocular video. ACM Transactions on Graph-
ics, 35(3):28:1–15, June 2016.

[3] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-
shick, S. Guadarrama, and T. Darrell. Caffe: Convolu-
tional architecture for fast feature embedding. arXiv preprint
arXiv:1408.5093, 2014.

[4] E. Richardson, M. Sela, and R. Kimmel. 3D face reconstruc-
tion by learning from synthetic data. In 3DV, 2016.

Figure 9. Euclidean photometric error in RGB space, each chan-
nel in [0, 1]. Our final results significantly improve fitting quality.

[5] E. Richardson, M. Sela, R. Or-El, and R. Kimmel. Learn-
ing detailed face reconstruction from a single image. In The
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), July 2017.

[6] M. Sela, E. Richardson, and R. Kimmel. Unrestricted fa-
cial geometry reconstruction using image-to-image transla-
tion. arxiv, 2017.
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Figure 10. Comparison to Garrido et al. [2]. We achieve higher
quality reconstructions, since our jointly learned model allows
leaving the restricted 3DMM subspace and generalizes better than
a corrective space based on manifold harmonics.

Figure 11. In contrast to the ‘in-the-wild’ texture model of Booth
et al. [1] that contains shading, our approach yields a reflectance
model. In addition, our learned optimal corrective space goes far
beyond the restricted low-dimensional geometry subspace that is
commonly employed.

Figure 12. External occluders might be baked into the correctives.



Figure 13. Our approach allows for high-quality reconstruction of
facial geometry, reflectance and incident illumination from just a
single monocular color image. Note the reconstructed facial hair,
e.g., the beard, reconstructed make-up, and the eye lid closure,
which are outside the restricted 3DMM subspace.

Figure 14. Comparison to Tewari et al. [7]. We achieve higher
quality in terms of geometry and reflectance, since our jointly
trained model allows leaving the restricted 3DMM subspace. This
prevents surface shrinkage due to unexplained facial hair.

Figure 15. Comparison to Richardson et al. [4, 5] and Sela et
al. [6]. They obtain impressive results for faces within the span of
the synthetic training corpus, but suffer for out-of-subspace shape
and reflectance variations, e.g., people with beards. Our approach
is not only robust to facial hair and make-up, but learns to recon-
struct such variations based on the jointly trained model.


