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A. Mathematical Details

In this section, we first provide the two core mathe-
matical formulations and then present detailed proofs for
Lemma 1 and Theorem 1.
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OC-SVM formulation:
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A.l. Proof of Lemma 1

Lemma 1. If 1/ny < v < 1, the SVDD formulation in (1)
is equivalent to the OC-SVM formulation in (2) when the
evaluation functions for the two are given by

hsvop(x) = R* — | Wg(x) — |, (3)
hoc.syu(x) = w* T Uy(x) — p*, 4)

with the correspondence w* = c*, and p* = c*T Wy(x,),
where x is a support vector in (1) that lies on the learned
enclosing sphere.

Proof. The condition corresponds to the case 1/ny < C' <
1in [1] with C = 1/(v - ny). We introduce the kernel
function K (z;,x;) = Wy(x;)T Vy(x;). Since K (z;, ;)
is constant in our setting, the same dual formulation for (1)
and (2) can be written as:
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Let S = {i| 0 < a; < C}. We have the following results:
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where s € S. Substituting into (3) and (4), we obtain
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A.2. Proof of Theorem 1

Theorem 1. If 1/ny < v < 1 and c*TWy(xs) # 0 for
some support vector s, hsypp(x) defined in (3) is asymp-
totically a Parzen window density estimator in the feature
space with Epanechnikov kernel.

Proof. Given the condition, according to Lemma 1,
hsypp(x) is equivalent to hoc.sym(x) with p* # 0. From
the results in [10] and the fact that > «; = 1, we obtain:
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where Kg(u) = 3(1 — u?), |u| < 1 is the Epanechnikov
kernel. As a consequence of Proposition 4 in [10] and the
proof of Proposition 1 in [11], as nyy — oo, the fraction
of support vector is v, and the fraction of points with 0 <
a; < 1/(v - ny) vanishes. Therefore, either o; = 0 or
a; = 1/(v - ny). We introduce the notation S = {i | o;; =



1/(v - ny)}. Then asymptotically,
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where f(z) = T 2ses Ki (@) is a density es-
timator. As a result, hsypp () is equivalent to a Parzen win-
dow density estimator with Epanechnikov kernel of band-
width 2. By scaling properly, Parzen window estimator with
different bandwidths can be obtained. O

B. Implementation Details

We adopt the network architecture presented in [16]. The
network is first trained on the CASTIA-WebFace dataset [14]
using SGD for 750K iterations with a standard batch size
128 and momentum 0.9. The learning rate is set to 0.01
initially and is halved every 100K iterations. The weight
decay rates of all the convolutional layers are set to 0, and
the weight decay of the final fully connected layer is set to
5 x 10~%. Then, the model is finetuned with the MSCeleb-
IM dataset [6] using the learning rate 1 x 10~* for all the
convolutional layers, and 1 x 10~2 for the fully connected
layers. The network is then trained with additional 230K it-
erations. The inputs to the networks are 100x 100x3 RGB
images. Data augmentation is performed by randomly crop-
ping and horizontally flipping face images. Given a face
image, the deep representation is extracted from the pool5
layer with dimension 320.

C. Baseline Methods

e Agglomerative Hierarchical Clustering (AHC) [5]:
The conventional hierarchical clustering algorithm.

e K-means [8]: The classic K-means algorithm.

e Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) [2]: A well-known density-based
clustering method. We set the parameter MinPts = 5.

o Affinity Propagation (AP) [3]: Affinity Propagation
groups data points based on the concept of “message
passing”. It automatically finds exemplars and deter-
mines the number of clusters.

e Sparse Subspace Clustering using Orthogonal Match-
ing Pursuit (SSC-OMP) [15]: SSC-OMP is a competi-
tive method and runs faster than the classic SSC.

e Joint Unsupervised Learning of deep representations
and clusters (JULE) [13]: JULE initializes each image
as a cluster. It then iteratively merges images in feature
space and updates network parameters.

e Deep Embedded Regularized Clustering (DE-
PICT) [4]: DEPICT is an efficient image clustering
method that runs faster than JULE while attaining
comparable performance.

e Proximity-Aware Hierarchical Clustering (PAHC) [7]:
PAHC exploits neighborhood similarity based on lin-
ear SVMs. This method achieves high clustering per-
formance on several face datasets.

e Approximate Rank-Order Clustering (ARO) [9]: ARO
measures pairwise similarity based on shared nearest
neighbors. The method is computationally efficient
and is highly scalable.

e Conditional Pairwise Clustering (ConPaC) [12]: Con-
PaC builds a discriminative conditional random field
model on the adjacency matrix, and then infers the
parameters using the loopy belief propagation. This
method outperforms several clustering algorithms on
challenging face datasets.

D. Additional Evaluations on the 1JB-B dataset

Table 1 reports the F-measure and NMI comparisons on
the three subtasks in IJB-B. Table 2 summarizes the statis-
tics of these subtasks.

Dataset 1JB-B-32 1JB-B-64 1JB-B-512

F NMI F NMI F NMI

K-means [8] 0.659 0.806 | 0.677 0.837 | 0.555 0.839
AHC [5] 0.845 0915 | 0.814 00912 | 0.746 0.918
AP [3] 0.513 0.814 | 0.508 0.831 | 0.422 0.847
DBSCAN [2] 0.825 0.896 | 0.751 0.885 | 0.696 0.888
SSC-OMP [15] | 0.361 0.575 | 0.275 0.539 | 0.111 0.521

PAHC [7] 0.798 0.891 | 0.786 0.898 | 0.650 0.882
ARO* [9] 0.667 - 0.574 - 0.410 -
ConPaC* [12] 0.751 - 0.656 - 0.481 -
DDC 0.827 0.906 | 0.783 0.903 | 0.733 0.909
DDC-NEG 0.851 0.919 | 0.818 0.915 | 0.761 0.918

Table 1: BCubed F-measure and NMI performance compar-
isons. Results reported from the original papers are marked
by asterisks (*). The best performance is reported in bold.

Dataset \ # Samples \ # Subjects
1JB-B-32 1,026 32
1/B-B-64 2,080 64
1JB-B-512 18,251 512

Table 2: Statistics for the three IJB-B subtasks.
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