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1. Equivariance properties

In this section we prove the equivariance of the individ-
ual layers of Steerable Filter CNNs under rotations by the
sampled orientations in Θ, assuming signals on a continu-
ous domain R2. Translational equivariance follows directly
from either the utilization of spatial convolutions or from
the independence of the operation on the spatial position.

1.1. Input layer

The first layer maps an image I : R2 → R to a fea-
ture map ζ(1) : R2 o Θ → R by first convolving it with
multiple rotated versions ρθΨ of a filter Ψ : R2 → R and
subsequently adding a bias β and applying a nonlinearity
σ. Both steps are equivariant under rotations of the image
by angles α ∈ Θ. This means that ραI(x) is mapped to
Rαζ(1)(x, θ) = ραζ

(1)(x, θ − α) where Rα is the group
action on functions on the group. To see that the first step
performs an equivariant mapping, simply insert a rotated
image,

(ραI ∗ ρθΨ) (x) =

∫
R2

I(ρ−αu) Ψ(ρ−θ(x− u)) du ,

and substitute ũ := ρ−αu. Since the transformation is or-
thogonal we have

∣∣det
(
∂ũ
∂u

)∣∣ = 1 and hence:

(ραI ∗ ρθΨ) (x) =

∫
R2

I(ũ) Ψ(ρ−(θ−α)(ρ−αx− ũ)) dũ

= ρα (I ∗ ρθ−αΨ) (x)

= ραy
(1)(x, θ − α)

=Rαy(1)(x, θ) .

The mutual transformation behavior is visualized in the fol-
lowing commutative diagram:

I(x)

ραI(x)

y(1)(x, θ)

ραy
(1)(x, θ − α)

ρα

∗ρθΨ

Rα

∗ρθΨ

Adding a bias β to each feature map channel and applying a
nonlinearity σ does not interfere with translational- or rota-
tional equivariance since both operations do neither depend
on the spatial position nor orientation channel:

y(l)(x, θ)

ραy
(l)(x, θ − α)

ζ(l)(x, θ)

ραζ
(l)(x, θ − α)

Rα

σ( · + β)

Rα

σ( · + β)

1.2. Group-convolutional layers

Given feature maps ζ(l)(x, θ), the group-convolutional
layers perform an equivariant mapping of Rαζ(l)(x, θ) to
Rαζ(l+1)(x, θ) under the group action R. The step of
adding the bias and applying the activation function is
equivariant by the same argument as in the first layer. What
is left to show is the equivariance

(
Rαζ(l) ~ Ψ

)
(x, θ) =

Rα
(
ζ(l) ~ Ψ

)
(x, θ) = Rαy(l)(x, θ) of the group convo-

lution. Inserting a transformed feature map and writing the
group convolution out explicitly yields:(

Rαζ(l) ~ Ψ
)

(x, θ)

=

∫
R2

∑
φ∈Θ

ζ(l)(ρ−αu, φ− α) Ψ(ρ−φ(x− u), θ − φ) du .

Again, we substitute ũ := ρ−αu with
∣∣det

(
∂ũ
∂u

)∣∣ = 1. Fur-
thermore, we let φ̃ := φ− α under which the sum is invari-
ant thanks to the cyclic structure of the subgroup Θ, and we
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obtain(
Rαζ(l) ~ Ψ

)
(x, θ)

=

∫
R2

∑
φ̃∈Θ

ζ(l)(ũ, φ̃) Ψ(ρ−φ̃(ρ−αx− ũ), (θ − α)− φ̃) dũ

=
(
ζ(l) ~ Ψ

)
(ρ−αx, θ − α)

=ραy
(l+1)(x, θ − α)

=Rαy(l+1)(x, θ) .

This proves the equivariance of the intermediate layers.
Again, the relations are illustrated in a commutative dia-
gram:

ζ(l)(x, θ)

ραζ
(l)(x, θ − α)

y(l+1)(x, θ)

ραy
(l+1)(x, θ − α)

Rα

~Ψ

Rα

~Ψ

1.3. Orientation max-pooling layer

For rotation-invariant segmentation or classification
we max-pool over orientations after the last group-
convolutional layer. The pooling step is itself equivariant
and results in a rotated version of its output:

max
θ
Rαζ(l)(x, θ) = max

θ
ραζ

(l)(x, θ − α)

= ρα

(
max
θ
ζ(l)(x, θ − α)

)
= ρα

(
max
θ
ζ(l)(x, θ)

)
.

The rotation operator commutes with the maximum over
orientation channels because it acts on spatial coordinates
only. We again visualize the transformation behavior by a
commutative diagram:

ζ(l)(x, θ)

ραζ
(l)(x, θ − α)

maxθ ζ
(l)(x, θ)

ρα maxθ ζ
(l)(x, θ)

Rα

max
θ

ρα

max
θ

In the case of classification the remaining spatial structure
is pooled out such that the output is invariant under trans-
formations of the input.

Instead of the maximum pooling which we applied in
our experiments, one could also utilize average pooling lay-
ers. The equivariance of average pooling can be derived in
analogy to the derivation for maximum pooling.

2. Derivation of the generalized He weight ini-
tialization scheme

In this section we give the derivation of the generalized
weight initialization scheme whose results are stated in the
main paper. For completeness we recall the assumptions
going into the following calculations. We consider the acti-
vation of a single neuron in layer l,

ζ
(l)
ĉx = max(0, y

(l)
ĉx ), (1)

where rectified linear units were chosen as nonlinearities.
The pre-nonlinearity activations are given by the convolu-
tion with filters Ψ and summing over the input channels:

y
(l)
ĉx =

∑
c

(
ζ(l−1)
c ∗Ψ

(l)
ĉc

)
x

+ β
(l)
ĉ

=
∑
c

∑
x′

ζ
(l−1)
c,x−x′Ψ

(l)
ĉcx′ + β

(l)
ĉ .

(2)

For convenience we shifted the addition of the bias to the
pre-nonlinearity activations. The filters are defined by

Ψ
(l)
ĉcx =

Q∑
q=1

w
(l)
ĉcqψqx ,

that is, they are built from Q real valued atomic filters ψq .
We keep the discussion general by not restricting the atomic
filters to be steerable. In analogy to Glorot and Bengio [1]
and He et al. [2] we assume the activations and gradients to
be i.i.d. and to be independent from the weights. We let the
weights themselves be mutually independent and have zero
mean but do not restrict them to be identically distributed
because of the inherent asymmetry coming from the differ-
ent atomic filters. Furthermore we initialize all biases to be
zero.

2.1. Backpropagation

In order to prevent vanishing or exploding gradients of
the loss E due to inappropriate initialization we demand
their variance Var

[
∂E
∂ζ(l)

]
to be constant across all layers.

It follows from (1) and (2) that the gradient with respect to
the activation ζ(l)

c0x0 of a particular neuron in layer l is given
by

∂E
∂ζ

(l)
c0x0

=
∑
ĉ,x

∂E
∂y

(l+1)
ĉx

∂y
(l+1)
ĉx

∂ζ
(l)
c0x0

(3)

=
∑
ĉ,x

∂E
∂ζ

(l+1)
ĉx

I
y
(l+1)
ĉx >0

∑
q

w
(l+1)
ĉc0q

ψq,x−x0 ,



where the indicator function I stems from the derivative of
the rectified linear unit. Like He et al. [2] we assume the
factors occurring in (3) to be statistically independent. Ob-
serving that E

[
w(l)

]
and therefore also E

[
∂E
∂ζ(l)

]
vanish,

and without loss of generality setting x0 = 0 this leads to

Var

[
∂E

∂ζ
(l)
c0x0

]
= E

( ∂E
∂ζ

(l)
c0x0

)2


=
∑
ĉ,ĉ′

∑
x,x′

∑
q,q′

E

[
∂E

∂ζ
(l+1)
ĉx

∂E
∂ζ

(l+1)
ĉ′x′

]
E
[
I
y
(l+1)
ĉx >0

I
y
(l+1)

ĉ′x′ >0

]
· E
[
w

(l+1)
ĉc0q

w
(l+1)
ĉ′c0q′

]
ψq,xψq′,x′

=
∑
ĉ

∑
x

∑
q

E

( ∂E
∂ζ

(l+1)
ĉx

)2
E

[
I
y
(l+1)
ĉx >0

]
· E
[(
w

(l+1)
ĉc0q

)2
]
ψ2
q,x

=
∑
ĉ

∑
x

∑
q

1

2
Var

[
∂E

∂ζ
(l+1)
ĉx

]
Var

[
w

(l+1)
ĉc0q

]
ψ2
q,x.

The factor 1
2 in the last line originates from the sym-

metric distribution of y(l) in conjunction with the indicator
function. Using the fact that the weights’ variances are ini-
tialized to only depend on q and the assumption of iden-
tically distributed gradients, both can be pulled out of the
sums:

Var

[
∂E
∂ζ(l)

]
= Var

[
∂E

∂ζ(l+1)

]
Ĉ

2

∑
q

Var
[
w(l+1)
q

]
‖ψq‖22 .

It seems reasonable to assign the contribution to the overall
variance equally to the Q summands. Demanding the gra-
dients’ variances to be constant over layers then leads to the
initialization condition

Var [wq] =
2

ĈQ ‖ψq‖22
.

2.2. Forward pass

The calculation for the forward pass is similar to the case
of backpropagation but considers the variance Var

[
y(l)
]

of
pre-nonlinearity activations instead of gradients. As an ex-
act calculation depends on the expectation value E

[
ζ(l−1)

]
,

which is not known, we approximate the result by exploit-
ing the central limit theorem. To this end, we note that
the pre-nonlinearity activations (2) are summed up from
C
∑
q | suppψq| independent terms of finite variance which

is a relatively large number in typical networks. This al-
lows to approximate the variance by the asymptotic result
implied by the central limit theorem:

Var
[
y

(l)
ĉx

]
= Var

[∑
c

∑
x′

∑
q

ζ
(l−1)
c,x−x′w

(l)
ĉcqψqx′

]
(CLT)
≈

∑
c

∑
x′

∑
q

Var
[
ζ

(l−1)
c,x−x′w

(l)
ĉcqψqx′

]
=

∑
c

∑
x′

∑
q

E
[(
ζ

(l−1)
c,x−x′

)2
]
E
[(
w

(l)
ĉcq

)2
]
ψ2
qx′ .

In the last step we made use of the independence of
the weights from the previous layer’s feature maps and
E[w] = 0. The symmetric distribution of weights leads
to a symmetric distribution of pre-nonlinearity activations
which in conjunction with ReLU nonlinearities implies
E[ζ2] = 1

2 Var[y]. To see this, note that the symmetry of the
distribution of pre-nonlinearity activation leads on the one
hand to

Var[y] = E[y2]

=

∫
R
ỹ2 py(ỹ) dỹ

= 2

∫
R+

ỹ2 py(ỹ) dỹ

and on the other hand to

E[ζ2] =

∫
R
ζ̃2 pζ(ζ̃) dζ̃

=

∫
R
ζ̃2

(
1

2
δ(0) + Θ(ζ̃)py(ζ̃)

)
dζ̃

=

∫
R+

ζ̃2 py(ζ̃) dζ̃ ,

where δ denotes the delta distribution and Θ is the Heav-
iside step function. As before, we drop all indices which
the random variables are independent from to compute the
sums. This leads to

Var
[
y(l)
]
≈ Var

[
y(l−1)

] C
2

∑
q

Var
[
w(l)
q

]
‖ψq‖22 ,

which in turn suggests a weight initialization according to

Var [wq] =
2

CQ ‖ψq‖22

to ensure that the activations’ variances are not amplified.



Operation Filter Size Feature Channels

Steerable input layer 7× 7 16
Steerable group convolution 5× 5 24
Spatial max pooling 2× 2

Steerable group convolution 5× 5 32
Steerable group convolution 5× 5 32
Spatial max pooling 2× 2

Steerable group convolution 5× 5 48
Steerable group convolution 5× 5 64
Global spatial pooling
Global orientation pooling

Fully connected 64
Fully connected 64
Fully connected + Softmax 10

Table 1: Architecture of the SFCNN used in the initial experiments on the
resolution of sampled orientations and the rotational generalization.

2.3. Normalization of complex atomic filters

The results derived above suggest to initialize the
weights of each layer uniformly by

Var [wq] =
2

CQ ‖ψq‖22
or Var [wq] =

2

ĈQ ‖ψq‖22
after normalizing the atomic filters to ‖ψq‖2 = 1. An ad-
ditional complication arises in our network construction
where steerability is only preserved when the relative ampli-
tude of the filters’ real and imaginary parts is not changed.
While for circular harmonics both parts have equal norms in
continuous space, this is not necessarily true for their sam-
pled versions which rules out an independent normalization
of the real and imaginary parts. As a steerability consistent
way of normalizing circular harmonics, we propose to ade-
quately normalize their complex modulus. The proper scale
follows from ‖ψ‖22 = ‖Re [ψ]‖22 + ‖Im [ψ]‖22 for ψ ∈ C to
be ‖ψ‖2 = 1 for DC filters whose imaginary part vanishes
and ‖ψ‖2 =

√
2 for non-DC filters.

3. Details on the experimental setup
Here we give further details on the network architectures

and the training setup of our experiments.

3.1. Rotated MNIST

For our initial experiments on the dependence on sam-
pled orientations and the networks’ rotational generaliza-
tion capabilities we utilize the architecture given in Table 1
as baseline. Based on the results of these experiment we fix
the number of sampled orientations to Λ = 16 and tune the
network architecture further. We achieve the best bench-
mark results using the slightly larger network given in Ta-
ble 2. In particular, we found that increasing the size of the

Operation Filter Size Feature Channels

Steerable input layer 9× 9 24
Steerable group convolution 7× 7 32
Spatial max pooling 2× 2

Steerable group convolution 7× 7 36
Steerable group convolution 7× 7 36
Spatial max pooling 2× 2

Steerable group convolution 7× 7 64
Steerable group convolution 5× 5 96
Global spatial pooling
Global orientation pooling

Fully connected 96
Fully connected 96
Fully connected + Softmax 10

Table 2: Architecture of the SFCNN used with Λ = 16 sampled orienta-
tions in the final benchmarking experiments on rotated MNIST.

filter masks improved the results. Both architectures con-
sist of one steerable input layer which maps the input im-
ages to the group, five following group convolutional layers
and three fully connected layers. After every two steerable
filter layers we perform a spatial 2 × 2 max-pooling. The
orientation dimension and the remaining spatial dimensions
are pooled out globally after the last convolutional layer.
We normalize the activations by adding batch normaliza-
tion layers [3] after each convolutional and fully connected
layer. The batch normalization on the group does not inter-
fere with the equivariance when the responses are normal-
ized by averaging over both spatial and orientation dimen-
sions.

The number of feature channels stated in the tables refers
to the number of learned filters Ĉ of the corresponding
layer. As these filters are themselves applied with respect to
Λ orientations we end up with ĈΛ responses; e.g. 24 · 16 =
384 effective responses in the first layer of the smaller net-
work. Note that the extraction of this comparatively large
number of responses without overfitting is possible because
the rotational weight sharing leads to an increased parame-
ter utilization (in the sense of Cohen and Welling [4]) by a
factor Λ.

All networks are trained for 40 epochs using the Adam
optimizer [5] with standard parameters. The initial learning
rate is set to 0.015 and is decayed exponentially with a rate
of 0.8 per epoch starting from epoch 15. We regularize the
weights with an elastic net penalty with hyperparameters
λL1 = λL2 which are set to 10−7 and 10−8 for the convolu-
tional and fully connected layers respectively. Dropout [6]
is used only in the fully connected layers with a dropping
probability of p = 0.3.



Figure 1: Network architecture used to predict the membrane probability map for the ISBI 2012 EM segmentation challenge. The topology is inspired by
the U-Net [7] and FusionNet [8] but uses the proposed steerable group-convolution layers with Λ = 17 orientations. To mitigate boundary artifacts we feed
reflect-padded images into the network.



3.2. ISBI 2012 EM segmentation challenge

The network architecture used to segment the mem-
branes from raw EM images of neural tissue for the ISBI
EM segmentation challenge is visualized in Figure 1. In-
spired by the U-Net [7] it is build as a symmetric encoder-
decoder network with additional skip-connections between
stages of the same resolution. This allows to extract se-
mantic information from a large field of view while at the
same time preserving precise spatial localization. Further,
we adopt two modifications from [8]: we do not concatenate
the skipped feature maps but add it to the decoder features
upsampled from the previous stage, and we use intermediate
residual blocks (here of depth 1). On the highest resolution
level we learn Ĉ = 12 filters, applied in Λ = 17 orienta-
tions which corresponds to ĈΛ = 204 effective channels.
The number of filters is doubled when going to the second
and third level and is afterwards kept constant since we did
not observe further gains in performance when adding more
channels. All group-convolutional layers utilize kernels of
size 7× 7 pixels while the input layer applies 11× 11 pixel
kernels.

As input, we feed the network cropped regions of 256×
256 pixels which are padded to 320 × 320 pixels by re-
flecting a region of 32 pixels around the borders to alleviate
boundary artifacts. The padded regions are augmented by
random elastic deformations, reflections and rotations by
multiples of π

2 . After the decoder we max-pool over ori-
entations to obtain locally invariant features and crop out
256 × 256 pixels centrally. Two subsequent 1 × 1 convo-
lution layers map these features pixel-wise to the desired
probability map.

The network is optimized by minimizing the spatially av-
eraged binary cross-entropy loss between predictions and
the ground truth segmentation masks using the ADAM op-
timizer. As on the rotated MNIST dataset we regularize
the convolutional weights with an elastic net penalty with
hyperparameters λL1 = λL2 set to 10−7 and 10−8 for the
steerable and 1 × 1 convolution layers respectively. Here
we chose a dropout probability of p = 0.4 both in the steer-
able as well as in the 1× 1 convolution layers. The learning
rate is decayed exponentially by a factor of 0.85 per epoch
starting from an initial rate of 5 · 10−2.
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