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1. Introduction

In this Supplementary Material we report some addi-
tional implementation details and we show other quanti-
tative and qualitative results. Specifically, in Sec. 2 we
explain how Eq. 8 (main paper) can be efficiently im-
plemented using GPU-based parallel computing, while in
Sec. 3 we show how the human-body symmetry can be ex-
ploited in case of missed limb detections. In Sec. 4 we
train state-of-the-art Person Re-IDentification (Re-ID) sys-
tems using a combination of real and generated data, which,
on the one hand, shows how our images can be effectively
used to boost the performance of discriminative methods
and, on the other hand, indirectly shows that our generated
images are realistic and diverse. In Sec. 5 we show a direct
(qualitative) comparison of our method with the approach
presented in [2] and in Sec. 6 we show other images gen-
erated by our method, including some failure cases. Note
that some of the images in the DeepFashion dataset have
been manually cropped (after the automatic generation) to
improve the overall visualization quality.

2. Nearest-neighbour loss implementation

Our proposed nearest-neighbour loss is based on the def-
inition of LNN (x̂, xb) given in Eq. 8 (main paper). In that
equation, for each point p in x̂, the “most similar” (in the
Cx-based feature space) point q in xb needs to be searched
for in a n × n neighborhood of p. This operation may be
quite time consuming if implemented using sequential com-
puting (i.e., using a “for-loop”). We show here how this
computation can be sped-up by exploiting GPU-based par-
allel computing in which different tensors are processed si-
multaneously. For the terminology, we refer to the main
paper.

Given Cxb
, we compute n2 shifted versions of Cxb

:
{C(i,j)

xb }, where (i, j) is a translation offset ranging in a rel-
ative n × n neighborhood (i, j ∈ {−n−1

2 , ...,+n−1
2 }) and

C
(i,j)
xb is filled with the value +∞ in the borders. Using this

translated versions of Cxb
, we compute n2 corresponding

difference tensors {D(i,j)}, where:

D(i,j) = |Cx̂ − C(i,j)
xb
| (1)

and the difference is computed element-wise. D(i,j)(p)
contains the channel-by-channel absolute difference be-
tween Cx̂(p) and Cxb

(p + (i, j)). Then, for each D(i,j),
we sum all the channel-based differences obtaining:

S(i,j) =
∑
c

D(i,j)(c), (2)

where c ranges over all the channels and the sum is per-
formed pointwise. S(i,j) is a matrix of scalar values, each
value representing the L1 norm of the difference between a
point p in Cx̂ and a corresponding point p+ (i, j) in Cxb

:

S(i,j)(p) = ||Cx̂(p)− Cxb
(p+ (i, j))||1. (3)

For each point p, we can now compute its best match in
a local neighbourhood of Cxb

simply using:

M(p) = min(i,j)S
(i,j)(p). (4)

Finally, Eq. 8 (main paper) becomes:

LNN (x̂, xb) =
∑
p

M(p). (5)

Since we do not normalize Eq. 2 by the number of chan-
nels nor Eq. 5 by the number of pixels, the final value
LNN (x̂, xb) is usually very high. For this reason we use
a small value λ = 0.01 in Eq. 10 of the main paper when
weighting LNN with respect to LcGAN .

3. Exploiting the human-body symmetry
As mentioned in Sec. 3.1 of the main paper, we decom-

pose the human body in 10 rigid sub-parts: the head, the
torso and 8 limbs (left/right upper/lower arm, etc.). When
one of the joints corresponding to one of these body-parts
has not been detected by the HPE, the corresponding region
and affine transformation are not computed and the region-
mask is filled with 0. This can happen because of either



that region is not visible in the input image or because of
false-detections of the HPE.

However, when the missing region involves a limb (e.g.,
the right-upper arm) whose symmetric body part has been
detected (e.g., the left-upper arm), we can “copy” informa-
tion from the “twin” part. In more detail, suppose for in-
stance that the region corresponding to the right-upper arm
in the conditioning image is Ra

rua and this region is empty
because of one of the above reasons. Moreover, suppose
that Rb

rua is the corresponding (non-empty) region in xb
and that Ra

lua is the (non-empty) left-upper arm region in
xa. We simply set: Ra

rua := Ra
lua and we compute frua as

usual, using the (now, no more empty) regionRa
rua together

with Rb
rua.

4. Improving person Re-ID via data-
augmentation

The goal of this section is to show that the synthetic im-
ages generated with our proposed approach can be used to
train discriminative methods. Specifically, we use Re-ID
approaches whose task is to recognize a human person in
different poses and viewpoints. The typical application of
a Re-ID system is a video-surveillance scenario in which
images of the same person, grabbed by cameras mounted in
different locations, need to be matched to each other. Due to
the low-resolution of the cameras, person re-identification is
usually based on the colours and the texture of the clothes
[3]. This makes our method particularly suited to automat-
ically populate a Re-ID training dataset by generating im-
ages of a given person with identical clothes but in different
viewpoints/poses.

In our experiments we use Re-ID methods taken from
[3, 4] and we refer the reader to those papers for details
about the involved approaches. We employ the Market-
1501 dataset that is designed for Re-ID method benchmark-
ing. For each image of the Market-1501 training dataset
(T ), we randomly select 10 target poses, generating 10 cor-
responding images using our approach. Note that: (1) Each
generated image is labeled with the identity of the condi-
tioning image, (2) The target pose can be extracted from an
individual different from the person depicted in the condi-
tioning image (this is different from the other experiments
shown here and in the main paper). Adding the generated
images to T we obtain an augmented training set A. In
Tab. 1 we report the results obtained using either T (stan-
dard procedure) or A for training different Re-ID systems.
The strong performance boost, orthogonal to different Re-
ID methods, shows that our generative approach can be ef-
fectively used for synthesizing training samples. It also in-
directly shows that the generated images are sufficiently re-
alistic and different from the real images contained in T .

5. Comparison with previous work

In this section we directly compare our method with the
results generated by Ma et al. [2]. The comparison is based
on the pairs conditioning image-target pose used in [2], for
which we show both the results obtained by Ma et al. [2]
and ours.

Figs. 1-2 show the results on the Market-1501 dataset.
Comparing the images generated by our full-pipeline with
the corresponding images generated by the full-pipeline
presented in [2], most of the times our results are more real-
istic, sharper and with local details (e.g., the clothes texture
or the face characteristics) more similar to the details of the
conditioning image. For instance, in the first and the last
row of Fig. 1 and in the last row of Fig. 2, our results show
human-like images, while the method proposed in [2] pro-
duced images which can hardly be recognized as humans.

Figs. 3-4 show the results on the DeepFashion dataset.
Also in this case, comparing our results with [2], most of
the times ours look more realistic or closer to the details
of the conditioning image. For instance, the second row
of Fig. 3 shows a male face, while the approach proposed
in [2] produced a female face (note that the DeepFashion
dataset is strongly biased toward female subjects [2]). Most
of the times, the clothes texture in our case is closer to that
depicted in the conditioning image (e.g., see rows 1, 3, 4,
5 and 6 in Fig. 3 and rows 1 and 6 in Fig. 4). In row 5 of
Fig. 4 the method proposed in [2] produced an image with
a pose closer to the target; however it wrongly generated
pants while our approach correctly generated the appear-
ance of the legs according to the appearance contained in
the conditioning image.

We believe that this qualitative comparison using the
pairs selected in [2], shows that the combination of the
proposed deformable skip-connections and the nearest-
neighbour loss produced the desired effect to “capture” and
transfer the correct local details from the conditioning im-
age to the generated image. Transferring local information
while simultaneously taking into account the global pose
deformation is a difficult task which can more hardly be
implemented using “standard” U-Net based generators as
those adopted in [2].

6. Other qualitative results

In this section we present other qualitative results. Fig. 5
and Fig. 6 show some images generated using the Market-
1501 dataset and the DeepFashion dataset, respectively.
The terminology is the same adopted in Sec. 6.2 of the
main paper. Note that, for the sake of clarity, we used a
skeleton-based visualization of P (·) but, as explained in
the main paper, only the point-wise joint locations are used
in our method to represent pose information (i.e., no joint-
connectivity information is used).



Table 1: Accuracy of Re-ID methods on the Market-1501 test set (%)

Standard training set (T ) Augmented training set (A)
Model Rank 1 mAP Rank 1 mAP
IDE + Euclidean [3] 73.9 48.8 78.5 55.9
IDE + XQDA [3] 73.2 50.9 77.8 57.9
IDE + KISSME [3] 75.1 51.5 79.5 58.1
Discriminative Embedding [4] 78.3 55.5 80.6 61.3

Similarly to the results shown in Sec. 6.2 of the main
paper, also these images show that, despite the pose-related
general structure is sufficiently well generated by all the dif-
ferent versions of our method, most of the times there is
a gradual quality improvement in the detail synthesis from
Baseline to DSC to PercLoss to Full.

Finally, Fig. 7 and Fig. 8 show some failure cases
(badly generated images) of our method on the Market-
1501 dataset and the DeepFashion dataset, respectively.
Some common failure causes are:

• Errors of the HPE [1]. For instance, see rows 2, 3 and
4 of Fig. 7 or the wrong right-arm localization in row
2 of Fig. 8.

• Ambiguity of the pose representation. For instance,
in row 3 of Fig. 8, the left elbow has been detected
in xb although it is actually hidden behind the body.
Since P (xb) contains only 2D information (no depth
or occlusion-related information), there is no way for
the system to understand whether the elbow is behind
or in front of the body. In this case our model chose
to generate an arm considering that the arm is in front
of the body (which corresponds to the most frequent
situation in the training dataset).

• Rare poses. For instance, row 1 of Fig. 8 shows a girl
in an unusual rear view with a sharp 90 degree pro-
file face (xb). The generator by mistake synthesized a
neck where it should have “drawn” a shoulder. Note
that rare poses are a difficult issue also for the method
proposed in [2].

• Rare object appearance. For instance, the backpack in
row 1 of Fig. 7 is light green, while most of the back-
packs contained in the training images of the Market-
1501 dataset are dark. Comparing this image with the
one generated in the last row of Fig. 5 (where the back-
pack is black), we see that in Fig. 5 the colour of the
shirt of the generated image is not blended with the
backpack colour, while in Fig. 7 it is. We presume that
the generator “understands” that a dark backpack is an
object whose texture should not be transferred to the
clothes of the generated image, while it is not able to
generalize this knowledge to other backpacks.

• Warping problems. This is an issue related to our spe-
cific approach (the deformable skip connections). The
texture on the shirt of the conditioning image in row
2 of Fig. 8 is warped in the generated image. We pre-
sume this is due to the fact that in this case the affine
transformations need to largely warp the texture details
of the narrow surface of the profile shirt (conditioning
image) in order to fit the much wider area of the target
frontal pose.
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Figure 1: A qualitative comparison on the Market-1501 dataset between our approach and the results obtained by Ma et al.
[2]. Columns 1 and 2 show the conditioning and the target image, respectively, which are used as reference by both models.
Columns 3 and 4 respectively show the images generated by our full-pipeline and by the full-pipeline presented in [2].
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Figure 2: More qualitative comparison on the Market-1501 dataset between our approach and the results obtained by Ma et
al. [2].
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Figure 3: A qualitative comparison on the DeepFashion dataset between our approach and the results obtained by Ma et al.
[2].
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Figure 4: More qualitative comparison on the DeepFashion dataset between our approach and the results obtained by Ma et
al. [2].
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Figure 5: Other qualitative results on the Market-1501 dataset.
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Figure 6: Other qualitative results on the DeepFashion dataset.
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Figure 7: Examples of badly generated images on the Market-1501 dataset. See the text for more details.
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Figure 8: Examples of badly generated images on the DeepFashion dataset.


