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1. Theoretical Results

In the remainder of this section we make use of the
following properties of L-smooth functions (known as the
descent-lemma) and m-semiconvexity [1, 8], which are
standard results and therefore stated without proof:

Lemma. Let f : Rk×n → R be continuously differentiable
and let x, y ∈ Rk×n.

• If f is L-smooth (meaning that ∇f is Lipschitz contin-
uous with modulus L), then

f(y) ≤ f(x) + 〈∇f(x), y − x〉+ L

2
‖x− y‖2F . (1)

• If f is m-semiconvex (meaning that f + m
2 ‖ · ‖2F is

convex), then

f(y) ≥ f(x) + 〈∇f(x), y − x〉 − m

2
‖x− y‖2F . (2)

For showing convergence we make the following as-
sumptions on our problem:

• The function f is L-smooth, m-semiconvex and lower-
bounded.

• For all yi ∈ L, `(yi; ·) is lower-bounded.

• The kernel matrix K ∈ R|V|×|V| is surjective, i.e. the
smallest eigenvalue σmin(K

>K) > 0 is positive.

• After finitely many iterations the penalty parameter ρ
is sufficiently large and kept fixed such that

L2

ρσmin(K>K)
+

m− ρσmin(K
>K)

2
< 0. (3)

1.1. Proof of Lemma 1

In [7, 6], to show convergence of nonconvex ADMM, a
monotonic decrease of the augmented Lagrangian is guar-
anteed. Following a similar line of argument, we show that
the “discrete-continuous” augmented Lagrangian

Lρ(α, β, λ, y) :=
∑
i∈V

`(yi;βi) + f(α)

+
∑
C∈C

EC(y) + 〈λ,Kα− β〉+ ρ

2
‖Kα− β‖2F .

(4)

monotonically decreases with the iterates. Whereas its
value decreases with the primal and discrete variable up-
dates, the dual update yields a positive contribution to the
overall estimate. Yet, for ρ > 0 chosen large enough, K
surjective and f being L-smooth, this ascent can be domi-
nated by a sufficiently large descent in the primal block α,
updated last.

We need the following notation. Let Bt+1
:,yt denote the

matrix whose i-th row is given by Bt+1
i,yt

i
. In particular, by

definition of the β update, this means βt+1 = Bt+1
:,yt+1 .

Lemma. Let K ∈ R|V|×|V| be surjective and δ ≥ 0. For ρ
meeting condition (3) we have that

1. The discrete-continuous augmented Lagrangian
(4) decreases monotonically with the iterates
(αt, βt, λt, yt):

Lρ(α
t+1, βt+1, λt+1, yt+1)− Lρ(α

t, βt, λt, yt)

≤
(

L2

ρσmin(K>K)
+ m−ρσmin(K

>K)
2

)
‖αt+1 − αt‖2F

− δJyt+1 6= ytK, (5)

where J·K denotes the Iverson bracket.

2. {Lρ(α
t+1, βt+1, λt+1, yt+1)}t∈N is lower bounded.
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3. {Lρ(α
t+1, βt+1, λt+1, yt+1)}t∈N converges.

Proof. We rewrite the difference of two consecutive
“discrete-continuous” augmented Lagrangians as

Lρ(α
t+1, βt+1, λt+1, yt+1)− Lρ(α

t, Bt
:,yt , λt, yt)

= Lρ(α
t, Bt+1

:,yt , λ
t, yt)− Lρ(α

t, Bt
:,yt , λt, yt)

+ Lρ(α
t, βt+1, λt, yt+1)− Lρ(α

t, Bt+1
:,yt , λ

t, yt)

+ Lρ(α
t+1, βt+1, λt, yt+1)− Lρ(α

t, βt+1, λt, yt+1)

+ Lρ(α
t+1, βt+1, λt+1, yt+1)

− Lρ(α
t+1, βt+1, λt, yt+1)

We now bound each of the four differences separately:
Since the augmented Lagrangian is separable in β and

we solve for any yi a minimization problem in βyi
globally

optimal we have that

Lρ(α
t, Bt+1

:,yt , λ
t, yt)− Lρ(α

t, Bt
:,yt , λt, yt) ≤ 0. (6)

A similar estimate holds for the the discrete variable
yt+1 due to the update in the algorithm:

Lρ(α
t, βt+1, λt, yt+1)− Lρ(α

t, Bt+1
:,yt , λ

t, yt)

≤ −δJyt+1 6= ytK.
(7)

Now we devise a bound for the third term given by

Lρ(α
t+1, βt+1, λt, yt+1)− Lρ(α

t, βt+1, λt, yt+1)

= f(αt+1)− f(αt) + 〈Kαt+1 −Kαt, λt〉

+
ρ

2
‖Kαt+1 − βt+1‖2F − ρ

2
‖Kαt − βt+1‖2F .

We apply the identity ‖a+ c‖2F −‖b+ c‖2F = −‖b−a‖2F +
2〈a+c, a−b〉 with a := Kαt+1, b := Kαt and c = −βt+1

and obtain

f(αt+1)− f(αt)− ρ

2
‖Kαt+1 −Kαt‖2F

+ 〈Kαt+1 −Kαt, λt + ρ(Kαt+1 − βt+1)〉.

The optimality condition for the update of the variable α is
given as

0 = ∇f(αt+1) +K>(ρ(Kαt+1 − βt+1) + λt). (8)

We replace the term 〈Kαt+1 − Kαt, λt + ρ(Kαt+1 −
βt+1)〉 = 〈αt+1 − αt,K>(λt + ρ(Kαt+1 − βt+1))〉 and
obtain from the optimality condition of the α update that

f(αt+1)− f(αt)− ρ

2
‖Kαt+1 −Kαt‖2F

+ 〈αt+1 − αt,−∇f(αt+1)〉

≤ f(αt+1)− f(αt)− ρσmin(K
>K)

2
‖αt+1 − αt‖2F

+ 〈αt − αt+1,∇f(αt+1)〉.

Moreover, due to the m-semiconvexity of the f we know
that

f(αt) +
m

2
‖αt+1 − αt‖2F

≥ f(αt+1) + 〈∇f(αt+1), αt − αt+1〉.

Overall we can bound

Lρ(α
t+1, βt+1, λt, yt+1)− Lρ(α

t, βt+1, λt, yt+1)

≤ m− ρσmin(K
>K)

2
‖αt+1 − αt‖2F .

(9)

Since by assumption K is surjective, the smallest eigen-
value of K>K is greater than zero: σmin(K

>K) > 0.
This means there exists some ρ > 0 large enough so that
m−ρσmin(K

>K)
2 < 0.

Finally, we estimate the last term:

Lρ(α
t+1, βt+1, λt+1, yt+1)− Lρ(α

t+1, βt+1, λt, yt+1)

= 〈Kαt+1 − βt+1, λt+1 − λt〉 = 1

ρ
‖λt+1 − λt‖2F .

From the update of the dual variable and the optimality con-
dition for the α update (8) it follows that

−∇f(αt+1) = K>λt+1. (10)

Further, since f is L-smooth we know that

‖∇f(αt+1)−∇f(αt)‖2F ≤ L2‖αt+1 − αt‖2F . (11)

Overall, we obtain

σmin(K
>K)‖λt+1 − λt‖2F ≤ ‖K>λt+1 −K>λt‖2F

≤ L2‖αt+1 − αt‖2F .

This gives the bound for the last term:

Lρ(α
t+1, βt+1, λt+1, yt+1)− Lρ(α

t+1, βt+1, λt, yt+1)

≤ L2

ρσmin(K>K)
‖αt+1 − αt‖2F .

Then, by merging the four estimates we obtain the desired
result.

We proceed showing the lower boundedness of
{Lρ(α

t+1, βt+1, λt+1, yt+1)}t∈N. Since K is surjective,
there exists α′ such that Kα′ = βt+1 and it holds that

−L

2
‖αt+1 − α′‖2F ≥ − L

2σmin(K>K)
‖Kαt+1 −Kα′‖2F .



Let ρ > L
σmin(K>K)

. Then, since f is L-smooth, we have

f(αt+1) + 〈λt+1,Kαt+1 − βt+1〉

+
ρ

2
‖Kαt+1 − βt+1‖2F

= f(αt+1) + 〈K>λt+1, αt+1 − α′〉

+
ρ

2
‖Kαt+1 − βt+1‖2F

= f(αt+1) + 〈∇f(αt+1), α′ − αt+1〉

+
ρ

2
‖Kαt+1 − βt+1‖2F

≥ f(α′)− L

2
‖αt+1 − α′‖2F

+
ρ

2
‖Kαt+1 − βt+1‖2F

≥ f(α′) +
ρσmin(K

>K)− L

2σmin(K>K)
‖Kαt+1 − βt+1‖2F ≥ f(α′).

Overall, since by assumption f and `(yi; ·) are bounded
from below (for all yi ∈ L), this means

{Lρ(α
t+1, βt+1, λt+1, yt+1)}t∈N

is bounded from below.
Since {Lρ(α

t+1, βt+1, λt+1, yt+1)}t∈N is mono-
tonically decreasing and bounded from below,
{Lρ(α

t+1, βt+1, λt+1, yt+1)}t∈N converges. This com-
pletes the proof.

1.2. Proof of Lemma 2

Lemma. Let {(αt, βt, λt, yt)}t∈N be the iterates produced
by Algorithm 1. Then {(αt, βt, λt, yt)}t∈N is a bounded
sequence. Furthermore, for t → ∞ the distance of two
consecutive continuous iterates vanishes, and feasibility is
achieved in the limit:

‖αt+1 − αt‖F → 0, (12)

‖βt+1 − βt‖F → 0, (13)

‖λt+1 − λt‖F → 0, (14)

‖Kαt+1 − βt+1‖F → 0. (15)

Finally, if δ > 0 is chosen strictly positive, then there exists
some T ∈ N such yt+1 = yt for all t > T .

Proof. We sum over the estimate (5) which yields

−∞ < lim
t→∞

Lρ(α
t, βt, λt, yt)− Lρ(α

1, β1, λ1, y1)

≤
∞∑
t=1

(
L2

ρσmin(K>K)
+ m−ρσmin(K

>K)
2

)
‖αt+1 − αt‖2F

−
∞∑
t=1

δJyt+1 6= ytK

Due to the lowerboundedness, the infinite sums have to con-
verge. This yields that ‖αt+1 − αt‖F → 0. Since 0 ≤
σmin(K

>K)‖λt+1 − λt‖2F ≤ L2

ρσmin(K>K)
‖αt+1 − αt‖2F

and σmin(K
>K) > 0 also ‖λt+1 − λt‖F → 0. Since due

to the dual update λt+1 − λt = ρ(Kαt+1 − βt+1), also
‖Kαt+1 − βt+1‖F → 0. Moreover, it holds that

‖βt+1 − βt‖F ≤ ‖βt+1 −Kαt+1‖F + ‖Kαt+1 −Kαt‖F
+ ‖Kαt − βt‖F

≤ ‖Kαt+1 − βt+1‖F
+ ‖K‖‖αt+1 − αt‖F
+ ‖Kαt − βt‖F → 0

for t → ∞.
Finally, suppose that there exists an infinite subsequence

{tj}∞j=1 ⊂ {t}∞t=1 so that ytj+1 6= ytj . The last sum
rewrites as,

∞∑
t=1

δJyt+1 6= ytK =
∞∑
j=1

δ

which diverges for δ > 0 positive. This however contradicts
the lower boundedness of Lρ(α

t, βt, λt, yt).

1.3. Proof of Proposition 1

Definition (“Discrete-continuous” critical point). We call
(α∗, β∗, λ∗, y∗) a “discrete-continuous” critical point of
the discrete-continuous augmented Lagrangian (8) if it sat-
isfies

0 ∈ ∂(`(y∗i ; ·))(β∗
i )− λ∗

i , ∀ i (16)

0 = ∇f(α∗) +K>λ∗ (17)
Kα∗ = β∗, (18)

for y∗ with EC(y
∗) < ∞ for all C ∈ C. Here, ∂f(x)

denotes the “limiting” subdifferential [9, Definition 8.3] of
the function f at x with f(x) < ∞.

Proposition. Let δ ≥ 0. Then any limit point
(α∗, β∗, λ∗, y∗) of the sequence {(αt, βt, λt, yt)}t∈N is a
“discrete-continuous” critical point.

Proof. Let (α∗, β∗, λ∗, y∗) be a limit point of
{(αt, βt, λt, yt)}t∈N, and let {tj}∞j=1 ⊂ {t}∞t=1 be
the corresponding subsequence of indices. The optimality
conditions for the update of the variables βi (for any i) and
α are given as:

0 ∈ ∂`(y
tj
i ;β

tj
i )− ρ(Kiα

tj−1 − β
tj
i + 1/ρλ

tj−1
i ) (19)

0 = ∇f(αtj ) + ρK>(Kαtj − βtj + 1/ρλtj−1). (20)

Passing the limit j → ∞ and applying Lemma 2 we arrive
at condittions (16)–(18). This completes the proof.



(a) (b) (c) (d)

Figure 1: Form left to right: Ground-truth, RBF-kernel-k-means, coordinate descent, proposed method. The label inference
errors are 66.6% for constrained RBF-kernel k-means, 68.5% for coordinate descent and 2.5% for our method.

1.4. Proof of Proposition 2

Proposition. Let `(yi; ·) and f be proper, convex and
lower-semicontinuous and let δ > 0. Then the sequence
{(αt, βt, λt, yt)}t∈N produced by Algorithm 1 converges to
a “discrete-continuous” critical point of (8) and α∗ solves
the problem (27) to global optimality.

Proof. Let δ > 0. Then, due to Lemma 2 the discrete vari-
able converges, i.e. there is T > 0 so that for all t > T

yt+1 = yt. (21)

Then, since f and `(yi; ·) are convex proper and lsc., af-
ter finitely many iterations our scheme Alg. 1 reduces to
convex ADMM and the global convergence is a direct con-
sequence of [5, 4, 3]. This completes the proof.

2. Additional Experimental Results
2.1. Proof of Concept

As a proof of concept we conduct a synthetic experiment
with data sampled from 2D moon-shape distributions (600
samples, 4 classes, 150 per class). We sample 25 (possi-
bly overlapping) cliques C ⊂ V of cardinality 25 from
the set of examples. The synthetic labeling prior in this
experiment is given in terms of constraints, that balance
the label assignment within each clique. More precisely,
it restricts the maximal deviation of the determined label-
ing from the true labeling to a given bound within each
clique C ∈ C. Mathematically, the higher order ener-
gies EC in the MRF are defined so that EC(yC) = 0 if
Lj
C ≤ |{i ∈ C : yiC = j}| ≤ U j

C , and ∞ otherwise. The
bounds Lj

C and U j
C are fixed and chosen a-priori, such that

the number of samples i ∈ C assigned to class j deviates by
at most 3 from the true number within clique C. This means
that we do not provide any exact labels to the algorithm.

The overall task is to infer the correct labels from both,
the distribution of the examples in the feature space, and
the combinatorial prior encoded within the higher order en-
ergies. Within the algorithm, we solve the LP-relaxation

of the higher order MRF-subproblem (14) with the dual-
simplex method and threshold the solution. On this task,
we compare our method to constrained kernel k-means and
plain discrete-continuous coordinate descent on (5) with
an RBF kernel and an SVM-loss (see Figure 1). Like
[10, 11, 12, 2], we apply k-means in the RBF-kernel space
and solve the E-step w.r.t. to (14). It can be seen that both,
coordinate descent on the SVM-based-model (Figure 1c)
and constrained kernel k-means (Figure 1b) get stuck in
poor local minima. In contrast, our method is able to in-
fer the correct labels of most examples and finds a reason-
able classifier, even for a trivial initialization of the param-
eters, cf. Figure 1d. The label errors are 66.6% for con-
strained RBF-kernel k-means, 68.5% for coordinate descent
and 2.5% for our method.
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