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Encoder/Decoder
Linear(512) ReLU
Linear(512) ReLU
Linear(512) ReLU
Linear(512) ReLU
Linear(512) ReLU

Linear(512)

Table 1: Encoder and decoder architecture.

1. Supplementary

This documents provides additional information regard-
ing our main paper and discusses architecture, training and
further implementation details. Furthermore, we provide
additional experimental results in particular those that illus-
trate the benefit of the cross-modal latent space representa-
tion.

1.1. Training details

All code was implemented in PyTorch. For all models,
we used the ADAM optimizer with its default parameters to
train and set the learning rate of 10−4. The batch size was
set to 64.

2D to 3D. For the 2D to 3D modality we use identical
encoder and decoder architectures, consisting of a series
of (Linear,ReLU)-layers. The exact architecture is summa-
rized in table 1.

RGB to 3D. For the RGB to 3D modality, images were
normalized to the range [−0.5, 0.5] and we used data aug-
mentation to increase the dataset size. More specifically, we
randomly shifted the bounding box around the hand image,
rotated the cropped images in the range [−45◦, 45◦] and ap-
plied random flips along the y-axis. The resulting image
was then resized to 256×256. The joint data was augmented
accordingly.
Because the RHD and STB datasets have non-identical hand
joint layouts (RHD gives the wrist-joint location, whereas
STB gives the palm-joint location), we shifted the wrist
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Linear(4096) BatchNorm ReLU

Reshape(256, 4, 4)
ConvT(128) BatchNorm ReLU
ConvT(64) BatchNorm ReLU
ConvT(32) BatchNorm ReLU
ConvT(16) BatchNorm ReLU
ConvT(8) BatchNorm ReLU

ConvT(3)

Table 2: Encoder and Decoder architecture for RGB data.
ConvT corresponds to a layer performing transposed Con-
volution. The number indicated in the bracket is the number
of output filters. Each ConvT layer uses a 4×4 kernel, stride
of size 2 and padding of size 1.

joint of RHD into the palm via interpolating between the
wrist and first middle-finger joint. We trained on both hands
of the RHD dataset, whereas we used both views of the
stereo camera of the STB dataset. This is the same pro-
cedure as in [2]. The encoder and decoder architectures for
RGB data are detailed in table 2. We used the same en-
coder/decoder architecture for the 3D to 3D joint modality
as for the 2D to 2D case (shown in table 1).

Depth to 3D. We used the same architecture and train-
ing regime as for the RGB case. The only difference was
adjusting the number of input channels from 3 to 1.

1.2. Qualitative Results

In this section we provide additional qualitative results,
all were produced with the architecture and training regime
detailed in the main paper.

Latent space consistency. In Fig. 1 we embed data sam-
ples from RHD and STB into the latent space and perform a
t-SNE embedding. Each data modality is color coded (blue:
RGB images, green: 3D joints, yellow: 2D joints). Here,
Fig. 1a displays the embedding for our model when it is
cross-trained. We see that each data modality is evenly dis-
tributed, forming a single, dense, approximately Gaussian
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cluster. Compared to Fig. 1b which shows the embedding
for the same model without cross-training, it is clear that
each data modality lies on a separate manifold. This fig-
ure indicates that cross-training is vital for learning a multi-
modal latent space.

To further evaluate this property, in Fig. 2 we show sam-
ples from the manifold, decoding them into different modal-
ities. The latent samples are chosen such that the lie on an
interpolated line between two embedded images. In other
words, we took sample x1RGB and x2RGB and encoded them
to obtain latent sample z1 and z2. We then interpolated
linearly between these two latent samples, obtaining latent
samples zj which were then decoded into the 2D, 3D and
RGB modality, resulting in a triplet. Hence the left-most
and right-most samples of the figure correspond to recon-
struction of the RGB image and prediction of its 2D and 3D
keypoints, whereas the middle figures are completely syn-
thetic. It’s important to note here that each decoded triplet
originates from the same point in the latent space. This vi-
sualization shows that our learned manifold is indeed con-
sistent amongst all three modalities. This result is in-line
with the visualization of the joint embedding space visual-
ized in Fig. 1.

Additional figures. Fig. 3a visualizes predictions on
STB. The poses contained in the dataset are simpler, hence
the predictions are very accurate. Sometimes the estimated
hand poses even appear to be more correct than the ground
truth (cf. right most column). Fig. 3b shows predictions on
RHD. The poses are considerably harder than in the STB
dataset and contain more self-occlusion. Nevertheless, our
model is capable of predicting realistic poses, even for oc-
cluded joints. Fig. 5 shows similar results for depth images.

Fig. 4 displays the input image, its ground truth joint
skeleton and predictions of our model. These were con-
structed by sampling repeatedly from the latent space from
the predicted mean and variance which are produced by the
RGB encoder. Generally, there are only minor variations in
the pose, showing the high confidence of predictions of our
model.

1.3. Influence of model capacity

All of our models predicting 3D joint skeleton from
RGB images have strictly less parameters than [2]. Our
smallest model consists of 12′398′387 parameters, and the
biggest ranges up to 14′347′346. In comparison, [2] uses
21′394′529 parameters. Yet, we still outperform them on
RHD and reach parity on the saturated STB dataset. This
provides further evidence of the proposed approach to learn
a manifold of physically plausible hand configurations and
to leverage this for the prediction of joint positions directly
from an RGB image.
[1] employ a ResNet-50 architecture to predict the 3D joint
coordinates directly from depth. In the experiment reported

2D→3D
RHD

RGB→3D
RHD

RGB→3D
STB

Variant 1 14.68 16.74 7.44
Variant 2 15.13 16.97 7.39
Variant 3 14.46 16.96 7.16
Variant 4 14.83 17.30 8.16

Table 3: The median end-point-error (EPE). Comparing our
variants.

2D→3D
RHD

RGB→3D
RHD

RGB→3D
STB

[2] (T+S+H) 18.84 24.49 7.52
Ours (T+S+H) 14.46 16.74 7.16
Ours (T+S) 14.91 16.93 9.11
Ours (T+H) 16.41 18.99 8.33
Ours (T) 16.92 19.10 7.78

Table 4: The median end-point-error (EPE). Comparison to
related work

in the main paper, our architecture produced a slightly
higher mean EPE (8.5) in comparison to DeepPrior++ (8.1).
We believe this can be mostly attributed to differences in
model capacity. To show this, we re-ran our experiment on
depth images, using the ResNet-50 architecture as encoder
and achieved a mean EPE of 8.0.
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(a) Cross-trained. (b) Not cross-trained.

Figure 1: t-SNE embedding of multi-modal latent space. The two figures show the embedding of data samples from
different modalities (blue: RGB images, green: 3D joints, yellow: 2D joints). In the left figure, our model was cross-trained,
whereas in the right figure, each data modality was trained separately. This shows that in order to learn a multi-modal latent
space, cross-training is vital.

Figure 2: Latent space walk. The left-most and right-most figures are reconstruction from latent space samples of two
real RGB images. The figures in-between are multi-modal reconstruction from interpolated latent space samples, hence are
completely synthetic. Shown are the reconstructed RGB images, with the reconstructed 2D keypoints (overlayed on the RGB
image) and the corresponding reconstructed 3D joint skeleton. Each column-triplet is created from the same point in the
latent space.



(a) STB (from RGB)

(b) RHD (from RGB)

Figure 3: RGB to 3D joint prediction. Blue is ground truth and red is the prediction of our model.



Figure 4: Sampling from prediction. This figure shows the resulting reconstruction from samples z ∼ N (µ, σ2) (red),
where µ, σ2 are the predicted mean and variance output by the RGB encoder. Ground-truth is provided in blue for comparison.

Figure 5: Depth to 3D joint predictions. For each row-triplet, the left most column corresponds to the input image, the
middle column is the ground truth 3D joint skeleton and the right column is our corresponding prediction.


