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Abstract

In this supplementary material, we provide the detailed
proof of Proposition 1 and Theorem 3. Proposition I shows
us that the independence assumption is the weakest assump-
tion of MPE problem. In Theorem 3, we prove a data-
independent error bound for the estimates of the weights,
which ensures that the proposed method can uniformly con-
verge to the optimal solution, no matter of data forms.

A. Proof of Proposition 1

Without loss of generality, we consider the case of two
component distributions; that is, the mixture P = A\ P} +
Ao Ps, where A1 > 0, A2 > 0and \; + Ao = 1.

Here comes the proof of Proposition 1.

(i) The irreducibility condition implies the independence
assumption while the independence assumption does not
imply the irreducibility condition.

Proof. (i.1) The irreducibility condition implies the inde-
pendence assumption.
We prove this by contradiction. Suppose that P; is irre-
ducible to P» but not independent with P», then there exists
no v € (0, 1] such that

Pr=9P+(1-7)Q,

where () is a new distribution which is different with P; and
P5. There also exist non-zero v, v9 € R such that

v P +va Py = 0.

Note that v; and v should be both non-zero; otherwise,
P, = 0 or P, = 0, which is not a distribution. Then we
have

V2
P =-2=P,.
U1

Take the integral of z € X on both sides of above equation,

we have,
1:/P1dx:/—ﬂp2dx.
T z U1

Then —5—? =1, and P, = P,, which conflicts with the fact
that P, and P, satisfy the irreducibility condition (y = 1).

Note that, according to the proof, two distributions are
independent with each other if and only if they are different
distributions.

(¢.2) The independence assumption does not imply the
irreducibility condition.
Here we give a counterexample. We assume that P, is a
Gaussian distribution with mean value vector 0, and @ is
another Gaussian distribution with a different mean value
vector 1. Then we have P, and () are independent with
each other. Suppose that P = 0.5P; + 0.5(), then P; and
Ps are also independent, but P; is not irreducible to P,. [

(ii) The anchor set condition implies the independence
assumption while the independence assumption does not
imply the anchor set condition.

Proof. (i1.1) The anchor set condition implies the indepen-
dence assumption.
We prove this by contradiction. It is assumed that P,
P, satisfy the anchor set condition but are not indepen-
dent. Then there exist non-zero v, and v, such that v; P; +
v9Po = 0. Similar to the proof of (i.1), we have P, = P,
which conflicts with the fact that P; has a compact support
set not shared with Ps.

(41.2) The independence assumption does not imply the
irreducibility condition.
We find that, in the proof of (i.1), the independence of two
component distributions only requires them to be different.
It is easy to find out two different distributions with the same



support set, such as, two Gaussian distributions with differ-
ent mean vectors. But obviously, they do not satisfy the
anchor set condition. ]

We now complete the proof of Proposition 1.

Remark. Based on the Proposition 1, We find that the in-
dependence assumption is the weakest assumption among
these assumptions. According to the published result, we
actually have: The anchor set condition implies the mutual
irreducibility condition, which further implies the indepen-
dence assumption.

B. Proof of Theorem 3

To prove Theorem 3, we need to first introduce the Mc-
Diarmid’s inequality [2].

Theorem 1 (McDiarmid’s Inequality). Let X =
{X1, X2, ,X,} be an i.i.d. sample and X' be a new
sample with the i-th example in X being replaced by an
independent example X|. If there exist by,ba, -+ by, > 0
such that f : X — R satisifies,
FX) = (XD < b Wi € {1, ,m).

Then for any X € X and € > 0, the following inequality
holds,
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Sketch of Proof The error D(X) — D(A*) is actually up-
per bounded by 2supy, |D(A) — D(X)], which is similiar to
the relationship between the consistency and generalization
error [5]. Thus, we need only to upper bound the later term.
We define a function f,
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It is observed that 2supy |[D(A) — D(A)| can be upper
bounded by sup, [|f(x™,x%, X)||, further be bounded by
the Rademacher-like term E sup, || f(x™,x%, X)||2, which
can be also bounded as in [1]. Then we can apply the Mc-
Diarmid’s inequality [2] to obtain the final result. Note that
the norm || - || denotes the I norm for vectors and Frobenius
norm for matrices.

Step one.  We first upper bound the error D(X)
using the term sup, || f(x™,x%, X)||, where
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Here comes the lemma,

Lemma 1. We denote A 2 AN > 0,¥i €
{1,--+,e}, 321 Ai = 1}. Then we have
D(A) = D(X*) < 4r sup || f(x™,x9, A)].
AEA

Proof. We observe that

D(A) = D(X*) = D(A) — D(X)
+ D(X) — D) + D(A*) — D(A¥)
< D(A) — D(A) + D(A*) — D(A¥)
<2sup |D(A) — D(A)].

A€A

where the first inequality holds due to the fact that A mini-
mizes D(A), and thus D(A) — D(A*) <0
According to the definition of f, we have
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We also have

lg(x™, %% N < 4r.
Further, we have
ID(A) = D] = [g(xM,x“, X F(xM,x, X))
< [lgGeM, x“ N I1F M, %, A
< 4] 7™ x| @

< 4r sup ||f( x|
AcA



where the first inequality holds due to the Cauchy-Schwarz
inequality. O

Step two. We try to upper bound the term
supyea |[F(xM, x9N This can be done by
first upper bounding the Rademacher-like term

Esupyea |/ (xM, x9N

Lemma 2. If the kernel is characteristic, and be upper
bounded by ||t (x)|| < r forall x € X. Then we have

1
E sup || f(x",x9, X)|* < 8 ( 7)
A€EA
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where ng = min (nqy, -+ ,n.).

Proof. Note that

E sup || f(x",x%X)|* < 4rE sup || f(x",x, N
AeA AeA
Here the expectation is taken on the i.i.d. samples x* and
. Now we introduce the “ghost” samples x’ M and x'°
[ ] which is an independent sample. Then
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where the first inequality holds due to the Jensen’s inequal-
ity. The norm and sup(-) are convex.

Let o, ,0pn, 0%, - ,0%,Vi € {l,---,c} be
the independent random variables such that P(c =

1) = Plo = -1) =
known as Rademacher variables. Due to the fact that
M 'C are the iid. copies of xM

X and x and x©,
then the random variable %Z?Zl (w(x;)fz/;(:cj)) —

Sy % Ty ((f) = (ah)) is symmetric, and it has
the same distribution with + Y%, o (¢(2) — 9(x;)) —

Sy :\T ;L:1 0’; (Q/J(xsl) — 1/)(x;)) Thus, we have

1/2, which are also
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Now we bound the term Eyur ||+ Zj LojU(x;)| and
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where ng = min (n1, - - - ,n.); and the first inequality holds

due to the Talagrand Contraction Lemma [4].



Similarly, we have
1 n
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where the first inequality holds due to the Talagrand Con-
traction Lemma [4].
The combining above results, we have our conclusion
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Step three. New we can finally conclude the proof. De-
note x°“ as the design matrix of the sample drawn from P;.
Let xM? be a new sample drawn from the mixture with the
p-th example in x™ being replaced by an independent ex-
ample 2/, where p € {1,--- ,n}, and x’“? be a new sam-
ple drawn from the component P; with the ¢-th example in
x'C being replaced by an independent example xg, where
ge{l,--- ,n;},foralli e {1,---,c}.
Then for any p € {1,--- ,n}, we have

sup || f(x?,x, X)|* — sup | £(x,x, X)|?
A€A AEA

S sup |f(XMpaxcv>‘) + f(Xvac,)‘)|
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Similarly, for any ¢ € {1,--- ,n;}and ¢ € {1,--- , ¢},
we have

sup || £ (M7, xON, x9N [P = sup || f(xM,x7, A
AEA A€A

< sup | (M7, %V, %0, 2) + (6, %, 0|
A€A

! ’f(XMv)(C\iaXicqvA) - f(XM,XC,A)l

< 8r sup
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Then employing the McDiarmid’s inequality, we have

P(sup ||f(x™,x% N)[? —Esup [|f(x™,x N[ > ¢)
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Then for any 6 > 0, with the probability at least 1 — J, we
have
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Then combining the results in Lemma | and 2, we have
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Then we complete our proof of Theorem 3.
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