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Abstract

In this supplementary material, we provide the detailed
proof of Proposition 1 and Theorem 3. Proposition 1 shows
us that the independence assumption is the weakest assump-
tion of MPE problem. In Theorem 3, we prove a data-
independent error bound for the estimates of the weights,
which ensures that the proposed method can uniformly con-
verge to the optimal solution, no matter of data forms.

A. Proof of Proposition 1
Without loss of generality, we consider the case of two

component distributions; that is, the mixture P = λ1P1 +
λ2P2, where λ1 ≥ 0, λ2 ≥ 0 and λ1 + λ2 = 1.

Here comes the proof of Proposition 1.
(i) The irreducibility condition implies the independence

assumption while the independence assumption does not
imply the irreducibility condition.

Proof. (i.1) The irreducibility condition implies the inde-
pendence assumption.
We prove this by contradiction. Suppose that P1 is irre-
ducible to P2 but not independent with P2, then there exists
no γ ∈ (0, 1] such that

P1 = γP2 + (1− γ)Q,

whereQ is a new distribution which is different with P1 and
P2. There also exist non-zero v1, v2 ∈ R such that

v1P1 + v2P2 = 0.

Note that v1 and v2 should be both non-zero; otherwise,
P2 = 0 or P1 = 0, which is not a distribution. Then we
have

P1 = −v2

v1
P2.

Take the integral of x ∈ X on both sides of above equation,
we have,

1 =

∫
x

P1dx =

∫
x

−v2

v1
P2dx.

Then −v2v1 = 1, and P1 = P2, which conflicts with the fact
that P1 and P2 satisfy the irreducibility condition (γ = 1).

Note that, according to the proof, two distributions are
independent with each other if and only if they are different
distributions.

(i.2) The independence assumption does not imply the
irreducibility condition.
Here we give a counterexample. We assume that P2 is a
Gaussian distribution with mean value vector 0, and Q is
another Gaussian distribution with a different mean value
vector 1. Then we have P2 and Q are independent with
each other. Suppose that P1 = 0.5P2 + 0.5Q, then P1 and
P2 are also independent, but P1 is not irreducible to P2.

(ii) The anchor set condition implies the independence
assumption while the independence assumption does not
imply the anchor set condition.

Proof. (ii.1) The anchor set condition implies the indepen-
dence assumption.
We prove this by contradiction. It is assumed that P1,
P2 satisfy the anchor set condition but are not indepen-
dent. Then there exist non-zero v1 and v2 such that v1P1 +
v2P2 = 0. Similar to the proof of (i.1), we have P1 = P2,
which conflicts with the fact that P1 has a compact support
set not shared with P2.

(ii.2) The independence assumption does not imply the
irreducibility condition.
We find that, in the proof of (i.1), the independence of two
component distributions only requires them to be different.
It is easy to find out two different distributions with the same
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support set, such as, two Gaussian distributions with differ-
ent mean vectors. But obviously, they do not satisfy the
anchor set condition.

We now complete the proof of Proposition 1.

Remark. Based on the Proposition 1, We find that the in-
dependence assumption is the weakest assumption among
these assumptions. According to the published result, we
actually have: The anchor set condition implies the mutual
irreducibility condition, which further implies the indepen-
dence assumption.

B. Proof of Theorem 3

To prove Theorem 3, we need to first introduce the Mc-
Diarmid’s inequality [2].

Theorem 1 (McDiarmid’s Inequality). Let X =
{X1, X2, · · · , Xn} be an i.i.d. sample and Xi be a new
sample with the i-th example in X being replaced by an
independent example X ′i . If there exist b1, b2, · · · , bn > 0
such that f : X → R satisifies,

|f(X)− f(Xi)| ≤ bi,∀i ∈ {1, · · · , n}.

Then for any X ∈ X and ε > 0, the following inequality
holds,

P (E[f(X)]− f(X) ≥ ε) ≤ exp(
−2ε2∑n
i=1 b

2
i

).

Sketch of Proof The error D(λ̂)−D(λ∗) is actually up-
per bounded by 2 supλ |D(λ)− D̂(λ)|, which is similiar to
the relationship between the consistency and generalization
error [5]. Thus, we need only to upper bound the later term.
We define a function f ,

f(xM ,xC ,λ) = E

 1

n

n∑
j=1

ψ(xj)−
c∑
i=1

λi
ni

ni∑
j=1

ψ(xij)


− 1

n

n∑
j=1

ψ(xj) +

c∑
i=1

λi
ni

ni∑
j=1

ψ(xij).

It is observed that 2 supλ |D(λ) − D̂(λ)| can be upper
bounded by supλ ‖f(xM ,xC ,λ)‖, further be bounded by
the Rademacher-like term E supλ ‖f(xM ,xC ,λ)‖2, which
can be also bounded as in [1]. Then we can apply the Mc-
Diarmid’s inequality [2] to obtain the final result. Note that
the norm ‖ ·‖ denotes the l2 norm for vectors and Frobenius
norm for matrices.

Step one. We first upper bound the error D(λ̂)−D(λ∗)
using the term supλ ‖f(xM ,xC ,λ)‖, where

f(xM ,xC ,λ) = E

 1

n

n∑
j=1

ψ(xj)−
c∑
i=1

λi
1

ni

ni∑
j=1

ψ(xij)


− 1

n

n∑
j=1

ψ(xj) +

c∑
i=1

λi
ni

ni∑
j=1

ψ(xij).

Here comes the lemma,

Lemma 1. We denote ∆
∆
= {λ|λi ≥ 0,∀i ∈

{1, · · · , c},
∑c
i=1 λi = 1}. Then we have

D(λ̂)−D(λ∗) ≤ 4r sup
λ∈∆
‖f(xM ,xC ,λ)‖.

Proof. We observe that

D(λ̂)−D(λ∗) = D(λ̂)− D̂(λ̂)

+ D̂(λ̂)− D̂(λ∗) + D̂(λ∗)−D(λ∗)

≤ D(λ̂)− D̂(λ̂) + D̂(λ∗)−D(λ∗)

≤ 2 sup
λ∈∆
|D(λ)− D̂(λ)|.

where the first inequality holds due to the fact that λ̂ mini-
mizes D̂(λ), and thus D̂(λ̂)− D̂(λ∗) ≤ 0.

According to the definition of f , we have

‖f(xM ,xC ,λ)‖

≤ ‖E 1

n

n∑
j=1

ψ(xj)‖+ ‖E
c∑
i=1

λi
ni

ni∑
j=1

ψ(xij)‖

+ ‖ 1

n

n∑
j=1

ψ(xj)‖+ ‖
c∑
i=1

λi
ni

ni∑
j=1

ψ(xij)‖

≤ 4r.

Denote

g(xM ,xC ,λ) = E

 1

n

n∑
j=1

ψ(xj)−
c∑
i=1

λi
ni

ni∑
j=1

ψ(xij)


+

1

n

n∑
j=1

ψ(xj)−
c∑
i=1

λi
ni

ni∑
j=1

ψ(xij).

We also have

‖g(xM ,xC ,λ)‖ ≤ 4r.

Further, we have

|D(λ)− D̂(λ)| =
∣∣g(xM ,xC ,λ)f(xM ,xC ,λ)

∣∣
≤ ‖g(xM ,xC ,λ)‖‖f(xM ,xC ,λ)‖
≤ 4r‖f(xM ,xC ,λ)‖
≤ 4r sup

λ∈∆
‖f(xM ,xC ,λ)‖,

(1)



where the first inequality holds due to the Cauchy-Schwarz
inequality.

Step two. We try to upper bound the term
supλ∈∆ ‖f(xM ,xC ,λ)‖. This can be done by
first upper bounding the Rademacher-like term
E supλ∈∆ ‖f(xM ,xC ,λ)‖2.

Lemma 2. If the kernel is characteristic, and be upper
bounded by ‖ψ(x)‖ ≤ r for all x ∈ X . Then we have

E sup
λ∈∆
‖f(xM ,xC ,λ)‖2 ≤ 8r2(

1√
n

+
1
√
n0

),

where n0 = min (n1, · · · , nc).

Proof. Note that

E sup
λ∈∆
‖f(xM ,xC ,λ)‖2 ≤ 4rE sup

λ∈∆
‖f(xM ,xC ,λ)‖.

Here the expectation is taken on the i.i.d. samples xM and
xC . Now we introduce the “ghost” samples x′

M and x′
C

[3] which is an independent sample. Then

E sup
λ∈∆
‖f(xM ,xC ,λ)‖

= E sup
λ∈∆
‖E

 1

n

n∑
j=1

ψ(xj)−
c∑
i=1

λi
ni

ni∑
j=1

ψ(xij)


− 1

n

n∑
j=1

ψ(xj) +

c∑
i=1

λi
ni

ni∑
j=1

ψ(xij)‖

= E sup
λ∈∆
‖Ex′M ,x′C

 1

n

n∑
j=1

ψ(x′j)−
c∑
i=1

λi
ni

ni∑
j=1

ψ(x′ij )


− 1

n

n∑
j=1

ψ(xj) +

c∑
i=1

λi
ni

ni∑
j=1

ψ(xij)‖

≤ ExM ,xC ,x′M ,x′C sup
λ∈∆
‖ 1

n

n∑
j=1

ψ(x′j)−
c∑
i=1

λi
ni

ni∑
j=1

ψ(x′ij )

− 1

n

n∑
j=1

ψ(xj) +

c∑
i=1

λi
ni

ni∑
j=1

ψ(xij)‖

= ExM ,xC ,x′M ,x′C sup
λ∈∆
‖ 1

n

n∑
j=1

(
ψ(x′j)− ψ(xj)

)
−

c∑
i=1

λi
ni

ni∑
j=1

(
ψ(x′ij )− ψ(xij)

)
‖,

where the first inequality holds due to the Jensen’s inequal-
ity. The norm and sup(·) are convex.

Let σ1, · · · , σn, σi1, · · · , σini
,∀i ∈ {1, · · · , c} be

the independent random variables such that P (σ =

1) = P (σ = −1) = 1/2, which are also
known as Rademacher variables. Due to the fact that
x′
M and x′

C are the i.i.d. copies of xM and xC ,
then the random variable 1

n

∑n
j=1

(
ψ(x′j)− ψ(xj)

)
−∑c

i=1
λi

ni

∑ni

j=1

(
ψ(x′ij )− ψ(xij)

)
is symmetric, and it has

the same distribution with 1
n

∑n
j=1 σj

(
ψ(x′j)− ψ(xj)

)
−∑c

i=1
λi

ni

∑ni

j=1 σ
i
j

(
ψ(x′ij )− ψ(xij)

)
. Thus, we have

ExM ,xC ,x′M ,x′C sup
λ∈∆
‖ 1

n

n∑
j=1

(
ψ(x′j)− ψ(xj)

)
−

c∑
i=1

λi
ni

ni∑
j=1

(
ψ(x′ij )− ψ(xij)

)
‖

= ExM ,xC ,x′M ,x′C ,σ sup
λ∈∆
‖ 1

n

n∑
j=1

σj
(
ψ(x′j)− ψ(xj)

)
−

c∑
i=1

λi
ni

ni∑
j=1

σij
(
ψ(x′ij )− ψ(xij)

)
‖

≤ ExM ,x′M ,σ sup
λ∈∆
‖ 1

n

n∑
j=1

σj
(
ψ(x′j)− ψ(xj)

)
‖

+ ExC ,x′C ,σ sup
λ∈∆
‖

c∑
i=1

λi
ni

ni∑
j=1

σij
(
ψ(x′ij )− ψ(xij)

)
‖

≤ 2ExM ,σ‖
1

n

n∑
j=1

σjψ(xj)‖

+ 2ExC ,σ sup
λ∈∆
‖

c∑
i=1

λi
ni

ni∑
j=1

σijψ(xij)‖.

Now we bound the term ExM ,σ‖ 1
n

∑n
j=1 σjψ(xj)‖ and

ExC ,σ supλ∈∆ ‖
∑c
i=1

λi

ni

∑ni

j=1 σ
i
jψ(xij)‖, respectively.

We have

ExC ,σ sup
λ∈∆
‖

c∑
i=1

λi
ni

ni∑
j=1

σijψ(xij)‖

≤ rEσ sup
λ∈∆
‖

c∑
i=1

λi
ni

ni∑
j=1

σij‖

≤ r sup
λ∈∆

c∑
i=1

λi
ni

Eσ‖
ni∑
j=1

σij‖

≤ r
√
n0
.

(2)

where n0 = min (n1, · · · , nc); and the first inequality holds
due to the Talagrand Contraction Lemma [4].



Similarly, we have

ExM ,σ‖
1

n

n∑
j=1

σjψ(xj)‖

≤ r

n
Eσ

√√√√√ n∑
j=1

σj

2

≤ r√
n
.

(3)

where the first inequality holds due to the Talagrand Con-
traction Lemma [4].

The combining above results, we have our conclusion

E sup
λ∈∆
‖f(xM ,xC ,λ)‖2 ≤ 8r2(

1√
n

+
1
√
n0

).

Step three. New we can finally conclude the proof. De-
note xiC as the design matrix of the sample drawn from Pi.
Let xMp be a new sample drawn from the mixture with the
p-th example in xM being replaced by an independent ex-
ample x′p, where p ∈ {1, · · · , n}, and xiCq be a new sam-
ple drawn from the component Pi with the q-th example in
xiC being replaced by an independent example x′iq , where
q ∈ {1, · · · , ni}, for all i ∈ {1, · · · , c}.

Then for any p ∈ {1, · · · , n}, we have∣∣∣∣sup
λ∈∆
‖f(xMp,xC ,λ)‖2 − sup

λ∈∆
‖f(xM ,xC ,λ)‖2

∣∣∣∣
≤ sup

λ∈∆

∣∣f(xMp,xC ,λ) + f(xM ,xC ,λ)
∣∣

·
∣∣f(xMp,xC ,λ)− f(xM ,xC ,λ)

∣∣
≤ 8r

∣∣∣∣ 1n (ψ(x′p)− ψ(xp)
)∣∣∣∣

≤ 8r2

n
.

Similarly, for any q ∈ {1, · · · , ni} and i ∈ {1, · · · , c},
we have∣∣∣∣sup
λ∈∆
‖f(xMp,xC\i,xiCq,λ)‖2 − sup

λ∈∆
‖f(xM ,xC ,λ)‖2

∣∣∣∣
≤ sup

λ∈∆

∣∣∣f(xMp,xC\i,xiCq,λ) + f(xM ,xC ,λ)
∣∣∣

·
∣∣∣f(xM ,xC\i,xiCq,λ)− f(xM ,xC ,λ)

∣∣∣
≤ 8r sup

λ∈∆

∣∣∣∣λini (ψ(x′iq )− ψ(xiq)
)∣∣∣∣

≤ 8r2

ni
.

Then employing the McDiarmid’s inequality, we have

P (sup
λ∈∆
‖f(xM ,xC ,λ)‖2 − E sup

λ∈∆
‖f(xM ,xC ,λ)‖2 ≥ ε)

≤ exp(
−ε2

64r4( 1
n +

∑c
i=1

1
ni

)
).

Let

δ = exp(
−ε2

64r4( 1
n +

∑c
i=1

1
ni

)
).

Then for any δ > 0, with the probability at least 1 − δ, we
have

sup
λ∈∆
‖f(xM ,xC ,λ)‖

≤

√√√√√E sup
λ∈∆
‖f(xM ,xC ,λ)‖2 + 8r2

√√√√1

2
(

1

n
+

c∑
i=1

1

ni
) log

1

δ
.

Then combining the results in Lemma 1 and 2, we have

D(λ̂)−D(λ∗)

≤ 2 sup
λ∈∆
|D(λ)− D̂(λ)|

≤ 4r sup
λ∈∆
‖f(xM ,xC ,λ)‖

≤ 4r

√√√√√E sup
λ∈∆
‖f(xM ,xC ,λ)‖2 + 8r2

√√√√1

2
(

1

n
+

c∑
i=1

1

ni
) log

1

δ

≤ 4r

√√√√√8r2(
1√
n

+
1
√
n0

) + 8r2

√√√√1

2
(

1

n
+

c∑
i=1

1

ni
) log

1

δ

= 8
√

2r2

√√√√√(
1√
n

+
1
√
n0

) +

√√√√1

2
(

1

n
+

c∑
i=1

1

ni
) log

1

δ
.

Then we complete our proof of Theorem 3.
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