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Abstract

This note contains the appendices of the paper Surface Networks.

A The Dirac Operator

The quaternions H is an extension of complex numbers. A quaternion q 2 H can be represented in
a form q = a + bi + cj + dk where a, b, c, d are real numbers and i, j, k are quaternion units that
satisfy the relationship i

2 = j
2 = k

2 = ijk = �1.

vj

ej

f

As mentioned in Section 3.1, the Dirac operator used in the model can be conveniently repre-
sented as a quaternion matrix:

Df,j =
�1

2|Af |
ej , f 2 F, j 2 V ,

where ej is the opposing edge vector of node j in the face f , and Af is the area, as illustrated in Fig.
A, using counter-clockwise orientations on all faces.

The Deep Learning library PyTorch that we used to implement the models does not support
quaternions. Nevertheless, quaternion-valued matrix multiplication can be replaced with real-valued
matrix multiplication where each entry q = a+ bi+ cj + dk is represented as a 4⇥ 4 block
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a �b �c �d

b a �d c

c d a �b

d �c b a
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and the conjugate q
⇤ = a� bi� cj � dk is a transpose of this real-valued matrix:
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a b c d

�b a d �c

�c �d a b

�d c �b a

3

775 .
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B Theorem 4.1

B.1 Proof of (a)

We first show the result for the mapping x 7! ⇢ (Ax+B�x), corresponding to one layer of ��.
By definition, the Laplacian � of M is

� = diag(Ā)�1(U �W ) ,

where Āj is one third of the total area of triangles incident to node j, and W = (wi,j) contains the
cotangent weights [9], and U = diag(W1) contains the node aggregated weights in its diagonal.

From [4] we verify that

kU �Wk 

p

2max
i

8
<

:

s
U

2
i + Ui

X

i⇠j

Ujwi,j

9
=

; (1)

 2
p

2 sup
i,j

wi,j sup
j

dj

 2
p

2 cot(↵min)dmax ,

where dj denotes the degree (number of neighbors) of node j, ↵min is the smallest angle in the
triangulation of M and Smax the largest number of incident triangles. It results that

k�k  C
cot(↵min)Smax

infj Āj
:= LM ,

which depends uniquely on the mesh M and is finite for non-degenerate meshes. Moreover, since
⇢( · ) is non-expansive, we have

k⇢ (Ax+B�x)� ⇢ (Ax0 +B�x
0)k  kA(x� x

0) +B�(x� x
0)k (2)

 (kAk+ kBkLM)kx� x
0
k .

By cascading (2) across the K layers of the network, we obtain

k�(M;x)� �(M;x0)k 

0

@
Y

kK

(kAkk+ kBkkLM)

1

A kx� x
0
k ,

which proves (a). ⇤

B.2 Proof of (b)

The proof is analogous, by observing that kDk =
p
k�k and therefore

kDk 

p
LM . ⇤

B.3 Proof of (c)

To establish (c) we first observe that given three points p, q, r 2 R
3 forming any of the triangles of

M,

kp� qk2(1� |r⌧ |1)2  k⌧(p)� ⌧(q)k2  kp� qk2(1 + |r⌧ |1)2 (3)
A(p, q, r)2(1� |r⌧ |1C↵�2

min � o(|r⌧ |12)  A(⌧(p), ⌧(q), ⌧(r))2  A(p, q, r)2(1 + |r⌧ |1C↵�2
min + o(|r⌧ |12)) .(4)
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Figure 1: Triangular mesh and Cotangent Laplacian (figure reproduced from [2])

Indeed, (3) is a direct consequence of the lower and upper Lipschitz constants of ⌧(u), which are
bounded respectively by 1� |r⌧ |1 and 1 + |r⌧ |1. As for (4), we use the Heron formula

A(p, q, r)2 = s(s� kp� qk)(s� kp� rk)(s� kr � qk) ,

with s = 1
2 (kp�qk+kp�rk+kr�qk) being the half-perimeter. By denoting s⌧ the corresponding

half-perimeter determined by the deformed points ⌧(p), ⌧(q), ⌧(r), we have that

s⌧ �k⌧(p)�⌧(q)k  s(1+ |r⌧ |1)�kp�qk(1� |r⌧ |1) = s�kp�qk+ |r⌧ |1(s+kp�qk) and

s⌧ �k⌧(p)� ⌧(q)k � s(1� |r⌧ |1)�kp� qk(1+ |r⌧ |1) = s�kp� qk� |r⌧ |1(s+ kp� qk) ,

and similarly for the kr � qk and kr � pk terms. It results in

A(⌧(p), ⌧(q), ⌧(r))2 � A(p, q, r)2

1� |r⌧ |1

✓
1 +

s+ kp� qk

s� kp� qk
+

s+ kp� rk

s� kp� rk
+

s+ kr � qk

s� kr � qk

◆
� o(|r⌧ |1

2)

�

� A(p, q, r)2
h
1� C|r⌧ |1↵

�2
min � o(|r⌧ |1

2)
i
,

and similarly

A(⌧(p), ⌧(q), ⌧(r))2  A(p, q, r)2
h
1 + C|r⌧ |1↵

�2
min � o(|r⌧ |1

2)
i
.

By noting that the cotangent Laplacian weights can be written (see Fig. 1) as

wi,j =
�`

2
ij + `

2
jk + `

2
ik

A(i, j, k)
+

�`
2
ij + `

2
jh + `

2
ih

A(i, j, h)
,

we have from the previous Bilipschitz bounds that

⌧(wi,j)  wi,j

⇥
1� C|r⌧ |1↵

�2
min
⇤�1

+2|r⌧ |1

⇥
1� C|r⌧ |1↵

�2
min
⇤�1

 
`
2
ij + `

2
jk + `

2
ik

A(i, j, k)
+

`
2
ij + `

2
jh + `

2
ih

A(i, j, h)

!
,

⌧(wi,j) � wi,j

⇥
1 + C|r⌧ |1↵

�2
min
⇤�1

�2|r⌧ |1

⇥
1 + C|r⌧ |1↵

�2
min
⇤�1

 
`
2
ij + `

2
jk + `

2
ik

A(i, j, k)
+

`
2
ij + `

2
jh + `

2
ih

A(i, j, h)

!
,

which proves that, up to second order terms, the cotangent weights are Lipschitz continuous to
deformations.

3



Finally, since the mesh Laplacian operator is constructed as diag(Ā)�1(U � W ), with Āi,i =
1
3

P
j,k;(i,j,k)2F A(i, j, k), and U = diag(W1), let us show how to bound k�� ⌧(�)k from

Āi,i(1� ↵M|r⌧ |1 � o(|r⌧ |1
2))  ⌧(Āi,i)  Āi,i(1 + ↵M|r⌧ |1 + o(|r⌧ |1

2)) (5)

and

wi,j(1� �M|r⌧ |1 � o(|r⌧ |1
2))  ⌧(wi,j)  wi,j(1 + �M|r⌧ |1 + o(|r⌧ |1

2)) . (6)

Using the fact that Ā, ⌧(Ā) are diagonal, and using the spectral bound for k ⇥ m sparse matrices
from [3], Lemma 5.12,

kY k
2
 max

i

X

j;Yi,j 6=0

|Yi,j |

 
lX

r=1

|Yr,j |

!
,

the bounds (5) and (6) yield respectively

⌧(Ā) = Ā(1+ ✏⌧ ) , with k✏⌧k = o(|r⌧ |1) , and
⌧(U �W ) = U �W + ⌘⌧ , with k⌘⌧k = o(|r⌧ |1) .

It results that, up to second order terms,

k�� ⌧(�)k =
��⌧(Ā)�1(⌧(U)� ⌧(W ))� Ā

�1(U �W )
��

=
���
�
Ā[1+ ✏⌧ ]

��1
[U �W + ⌘⌧ ]� Ā

�1(U �W )
���

=
���
⇣
1� ✏⌧ + o(|r⌧ |1

2)
⌘
Ā

�1(U �W + ⌘⌧ )� Ā
�1(U �W )

���

=
��✏⌧�+ Ā

�1
⌘⌧

��+ o(|r⌧ |1
2)

= o(|⌧ |1) ,

which shows that the Laplacian is stable to deformations in operator norm. Finally, by denoting x̃⌧

a layer of the deformed Laplacian network

x̃⌧ = ⇢(Ax+B⌧(�)x) ,

it follows that

kx̃� x̃⌧k  kB(�� ⌧(�)xk (7)
 CkBk|r⌧ |1kxk . (8)

Also,

kx̃� ỹ⌧k  kA(x� y) +B(�x� ⌧(�)y)k

 (kAk+ kBkk�k)kx� yk+ k�� ⌧(�)kkxk

 (kAk+ kBkk�k)| {z }
�1

kx� yk+ C|r⌧ |1| {z }
�2

kxk , (9)

and therefore, by plugging (9) with y = x̃⌧ , K layers of the Laplacian network satisfy

k�(x;�)� �(x; ⌧(�)k 

0

@
Y

jK�1

�1(j)

1

A kx̃� x̃⌧k+

0

@
X

j<K�1

Y

j0j

�1(j
0)�2(j)

1

A |r⌧ |1kxk



2

4C

0

@
Y

jK�1

�1(j)

1

A kBk+

0

@
X

j<K�1

Y

j0j

�1(j
0)�2(j)

1

A

3

5 |r⌧ |1kxk . ⇤ .

4



B.4 Proof of (d)

The proof is also analogous to the proof of (c), with the difference that now the Dirac operator is no
longer invariant to orthogonal transformations, only to translations. Given two points p, q, we verify
that

kp� q � ⌧(p)� ⌧(q)k  f|⌧ |
1
kp� qk ,

which, following the previous argument, leads to

kD � ⌧(D)k = o(f|⌧ |
1
) . (10)

C Theorem 4.2

C.1 Proof of part (a)

The proof is based on the following lemma:

Lemma C.1 Let xN , yN 2 H(MN ) such that 8 N , kxNkH  c,kyNkH  c. Let x̂N = EN (xN ),
where EN is the eigendecomposition of the Laplacian operator �N on MN , , with associated

eigenvalues �1 . . .�N in increasing order. Let � > 0 and � be defined as in (??) for xN and yN . If

� > 1 and kxN � yNk  ✏ for all N ,

k�N (xN � yN )k2  C✏
2� 1

��1/2 , (11)

where C is a constant independent of ✏ and N .

One layer of the network will transform the difference x1�x2 into ⇢(Ax1+B�x1)�⇢(Ax2+
B�x2). We verify that

k⇢(Ax1 +B�x1)� ⇢(Ax2 +B�x2)k  kAkkx1 � x2k+ kBkk�(x1 � x2)k .

We now apply Lemma C.1 to obtain

k⇢(Ax1 +B�x1)� ⇢(Ax2 +B�x2)k  kAkkx1 � x2k+ CkBkkx1 � x2k
��1

��1/2

 kx1 � x2k
��1

��1/2

⇣
kAkkx1 � x2k

(2��1)�1

+ CkBk

⌘

 C(kAk+ kBk)kx1 � x2k
��1

��1/2 ,

where we redefine C to account for the fact that kx1�x2k
(2��1)�1

is bounded. We have just showed
that

kx
(r+1)
1 � x

(r+1)
2 k  frkx

(r)
1 � x

(r)
2 k

gr (12)

with fr = C(kArk+ kBrk) and gr = �r�1
�r�1/2 . By cascading (12) for each of the R layers we thus

obtain

k��(x1)� ��(x2)k 

"
RY

r=1

f

Q
r0>r gr0

r

#
kx1 � x2k

QR
r=1 gr , (13)

which proves (??) ⇤.
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Proof of (11): Let {e1, . . . , eN} be the eigendecomposition of �N . For simplicity, we drop the
subindex N in the signals from now on. Let x̂(k) = hx, eki and x̃(k) = �kx̂(k); and analogously
for y. From the Parseval identity we have that kxk2 = kx̂k

2. We express k�(x� y)k as

k�(x� y)k2 =
X

kN

�
2
k(x̂(k)� ŷ(k))2 . (14)

The basic principle of the proof is to cut the spectral sum (14) in two parts, chosen to exploit the
decay of x̃(k). Let

F (x)(k) =

P
k0�k x̃(k)

2

kxk
2
H

=

P
k0�k x̃(k)

2

P
k0 x̃(k)2

=

P
k0�k �

2
kx̂(k)

2

P
k0 �

2
kx̂(k)

2
 1 ,

and analogously for y. For any cutoff k⇤  N we have

k�(x� y)k2 =
X

kk⇤

�
2
k(x̂(k)� ŷ(k))2 +

X

k>k⇤

�
2
k(x̂(k)� ŷ(k))2

 �
2
k⇤✏

2 + 2(F (x)(k⇤)kxk
2
H
+ F (y)(k⇤)kyk

2
H
)

 �
2
k⇤✏

2 + 2F (k⇤)(kxk
2
H
+ kyk

2
H
)

 �
2
k⇤✏

2 + 4F (k⇤)D
2
, (15)

where we denote for simplicity F (k⇤) = max(F (x)(k⇤), F (y)(k⇤)). By assumption, we have
�
2
k . k

2� and
F (k) .

X

k0�k

k
2(���)

' k
1+2(���)

.

By denoting �̃ = � � � � 1/2, it follows that

k�(x� y)k2 . ✏
2
k
2�
⇤

+ 4D2
k
�2�̃
⇤

(16)

Optimizing for k⇤ yields

✏
22�k2��1

� 2�̃4D2
k
�2�̃�1 = 0, thus

k⇤ =


4�D2

�✏2

� 1
2�+2�̃

. (17)

By plugging (17) back into (16) and dropping all constants independent of N and ✏, this leads to

k�(x� y)k2 . ✏
2� 1

�+�̃ = ✏
2� 1

��1/2 ,

which proves part (a) ⇤.

C.2 Proof of part (b)

We will use the following lemma:

Lemma C.2 Let M = (V,E, F ) is a non-degenerate mesh, and define

⌘1(M) = sup
(i,j)2E

Āi

Āj
, ⌘2(M) = sup

(i,j,k)2F

`
2
ij + `

2
jk + `

2
ik

A(i, j, k)
, ⌘3(M) = ↵min . (18)
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Then, given a smooth deformation ⌧ and x defined in M, we have

k(�� ⌧(�))xk  C|r⌧ |1k�xk , (19)

where C depends only upon ⌘1, ⌘2 and ⌘3.

In that case, we need to control the difference ⇢(Ax + B�x) � ⇢(Ax + B⌧(�)x). We verify
that

k⇢(Ax+B�x)� ⇢(Ax+B⌧(�)x)k  kBkk(�� ⌧(�))xk .

By Lemma C.2 it follows that k(�� ⌧(�))xk  C|r⌧ |1k�xk and therefore, by denoting x
(1)
1 =

⇢(Ax+B�x) and x
(1)
2 = ⇢(Ax+B⌧(�)x), we have

kx
(1)
1 � x

(1)
2 k  C|r⌧ |1k�xk = C|r⌧ |1kxkH . (20)

By applying again Lemma C.1, we also have that

k�x
(1)
1 � ⌧(�)x(1)

2 k = k�x
(1)
1 � (�+ ⌧(�)��)x(1)

2 k

= k�(x(1)
1 � x

(1)
2 ) + (⌧(�)��)x(1)

2 k

 Ckx
(1)
1 � x

(1)
2 k

�1�1
�1�1/2 + |r⌧ |1kx

(1)
2 kH

. C|r⌧ |1

�1�1
�1�1/2 ,

which, by combining it with (20) and repeating through the R layers yields

k��(x,M)� ��(x, ⌧(M)k  C|r⌧ |1

QR
r=1

�r�1
�r�1/2 , (21)

which concludes the proof ⇤.
Proof of (19): The proof follows closely the proof of Theorem ??, part (c). From (5) and (6) we

have that

⌧(Ā) = Ā(I+G⌧ ) , with |G⌧ |1  C(⌘2, ⌘3)|r⌧ |1 , and
⌧(U �W ) = (I+H⌧ )(U �W ) , with |H⌧ |1  C(⌘2, ⌘3)|r⌧ |1 .

It follows that, up to second order o(|r⌧ |1
2) terms,

⌧(�)�� = ⌧(Ā)�1(⌧(U)� ⌧(W ))� Ā
�1(U �W )

=
�
Ā[1+G⌧ ]

��1
[(I+H⌧ )(U �W )]� Ā

�1(U �W )

' Ā
�1

H⌧ (U �W ) +G⌧� . (22)

By writing Ā
�1

H⌧ = fH⌧ Ā
�1, and since Ā is diagonal, we verify that

(fH⌧ )i,j = (H⌧ )i,j
Ai,i

Aj,j
,with

Ai,i

Aj,j
 ⌘1, and hence that

Ā
�1

H⌧ (U �W ) = fH⌧� , with |fH⌧ |1  C(⌘1, ⌘2, ⌘3)|r⌧ |1 . (23)

We conclude by combining (22) and (23) into

k(�� ⌧(�))xk = k(G⌧ + fH⌧ )�xk

 C
0(⌘1, ⌘2, ⌘3)|r⌧ |1k�xk ,

which proves (19) ⇤
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C.3 Proof of part (c)

This result is a consequence of the consistency of the cotangent Laplacian to the Laplace-Beltrami
operator on S [9]:

Theorem C.3 ([9], Thm 3.4) Let M be a compact polyhedral surface which is a normal graph

over a smooth surface S with distortion tensor T , and let T̄ = (det T )1/2T �1
. If the normal field

uniform distance d(T ,1) = kT̄ � 1k1 satisfies d(T ,1)  ✏, then

k�M ��Sk  ✏ . (24)

If �M converges uniformly to �S , in particular we verify that

kxkH(M) ! kxkH(S) .

Thus, given two meshes M, M0 approximating a smooth surface S in terms of uniform normal
distance, and the corresponding irregular sampling x and x

0 of an underlying function x̄ : S ! R,
we have

k⇢(Ax+B�Mx)� ⇢(Ax
0 +B�M0x

0)k  kAkkx� x
0
k+ kBkk�Mx��M0x

0
k . (25)

Since M and M
0 both converge uniformly normally to S and x̄ is Lipschitz on S, it results that

kx� x̄k  L✏ , and kx
0
� x̄k  L✏ ,

thus kx � x
0
k  2L✏. Also, thanks to the uniform normal convergence, we also have convergence

in the Sobolev sense:
kx� x̄kH . ✏ , kx

0
� x̄kH . ✏ ,

which implies in particular that
kx� x

0
kH . ✏ . (26)

From (25) and (26) it follows that

k⇢(Ax+B�Mx)� ⇢(Ax
0 +B�M0x

0)k  2kAkL✏+ (27)
+kBkk�Mx��S x̄+�S x̄��M0x

0
k

 2✏ (kAkL+ kBk) .

By applying again Lemma C.1 to x̃ = ⇢(Ax+B�Mx), x̃0 = ⇢(Ax
0 +B�M0x

0), we have

kx̃� x̃
0
kH  Ckx̃� x̃

0
k

�1�1
�1�1/2 . ✏

�1�1
�1�1/2 .

We conclude by retracing the same argument as before, reapplying Lemma C.1 at each layer to
obtain

k�M(x)� �M0(x0)k  C✏

QR
r=1

�r�1
�r�1/2 . ⇤ .
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D Proof of Corollary 4.3

We verify that

k⇢(B�x)� ⇢(B⌧(�)⌧(x))k  kBkk�x� ⌧(�)⌧(x)k

 kBkk�(x� ⌧(x)) + (�� ⌧(�))(⌧(x))k

 kBk(k�(x� ⌧(x))k+ k(�� ⌧(�))(⌧(x))k .

The second term is o(|r⌧ |1) from Lemma C.2. The first term is

kx� ⌧(x)kH  k�(I� ⌧)kkxk  kr
2
⌧kkxk ,

where kr
2
⌧k is the uniform Hessian norm of ⌧ . The result follows from applying the cascading

argument from last section. ⇤
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E Preliminary Study: Metric Learning for Dense Correspon-

dence

As an interesting extension, we apply the architecture we built in Experiments 6.2 directly to a dense
shape correspondence problem.

Similarly as the graph correspondence model from [8], we consider a Siamese Surface Network,
consisting of two identical models with the same architecture and sharing parameters. For a pair
of input surfaces M1,M2 of N1, N2 points respectively, the network produces embeddings E1 2

R
N1⇥d and E2 2 R

N2⇥d. These embeddings define a trainable similarity between points given by

si,j =
e
hE1,i,E2,ji

P
j0 e

hE1,i,E2,j0 i
, (28)

which can be trained by minimizing the cross-entropy relative to ground truth pairs. A diagram
of the architecture is provided in Figure 2.

In general, dense shape correspondence is a task that requires a blend of intrinsic and extrinsic
information, motivating the use of data-driven models that can obtain such tradeoffs automatically.
Following the setup in Experiment 6.2, we use models with 15 ResNet-v2 blocks with 128 output
features each, and alternate Laplace and Dirac based models with Average Pooling blocks to cover
a larger context: The input to our network consists of vertex positions only.

We tested our architecture on a reconstructed (i.e. changing the mesh connectivity) version of the
real scan of FAUST dataset[1]. The FAUST dataset contains 100 real scans and their corresponding
ground truth registrations. The ground truth is based on a deformable template mesh with the same
ordering and connectivity, which is fitted to the scans. In order to eliminate the bias of using the
same template connectivity, as well as the need of a single connected component, the scans are
reconstructed again with [5]. To foster replicability, we release the processed dataset in the additional
material. In our experiment, we use 80 models for training and 20 models for testing.

Since the ground truth correspondence is implied only through the common template mesh, we
compute the correspondence between our meshes with a nearest neighbor search between the point
cloud and the reconstructed mesh. Consequently, due to the drastic change in vertex replacement
after the remeshing, only 60-70 percent of labeled matches are used. Although making it more chal-
lenging, we believe this setup is close to a real case scenario, where acquisition noise and occlusions
are unavoidable.

Our preliminary results are reported in Figure 3. For simplicity, we generate predicted cor-
respondences by simply taking the mode of the softmax distribution for each reference node i:
ĵ(i) = argmaxj si,j , thus avoiding a refinement step that is standard in other shape correspondence
pipelines. The MLP model uses no context whatsoever and provides a baseline that captures the
prior information from input coordinates alone. Using contextual information (even extrinsically
as in point-cloud model) brings significative improvments, but these results may be substantially
improved by encoding further prior knowledge. An example of the current failure of our model is
depitcted in Figure 5, illustrating that our current architecture does not have sufficiently large spatial
context to disambiguate between locally similar (but globally inconsistent) parts.

We postulate that the FAUST dataset [1] is not an ideal fit for our contribution for two reasons:
(1) it is small (100 models), and (2) it contains only near-isometric deformations, which do not
require the generality offered by our network. As demonstrated in [7], the correspondence perfor-
mances can be dramatically improved by constructing basis that are invariant to the deformations.
We look forward to the emergence of new geometric datasets, and we are currently developing a
capture setup that will allow us to acquire a more challenging dataset for this task.
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Surface Networks

Surface Networks

Figure 2: Siamese network pipeline: the two networks take vertex coordinates of the input models
and generate a high dimensional feature vector, which are then used to define a map from M1 to
M2. Here, the map is visualized by taking a color map on M2, and transferring it on M1

MLPGround Truth LaplaceReference

Figure 3: Additional results from our setup. Plot in the middle shows rate of correct correspondence
with respect to geodesic error [6]. We observe that Laplace is performing similarly to Dirac in this
scenario. We believe that the reason is that the FAUST dataset contains only isometric deformations,
and thus the two operators have access to the same information. We also provide visual comparison,
with the transfer of a higher frequency colormap from the reference shape to another pose.
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Point CloudMLP Dirac Laplace

Figure 4: Heat map illustrating the point-wise geodesic difference between predicted correspon-
dence point and the ground truth. The unit is proportional to the geodesic diameter, and saturated at
10%.

Figure 5: A failure case of applying the Laplace network to a new pose in the FAUST benchmark
dataset. The network confuses between left and right arms. We show the correspondence visualiza-
tion for front and back of this pair.
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F Further Numerical Experiments

Ground Truth MLP AvgPool Laplace Dirac

Figure 6: Qualitative comparison of different models. We plot 1th, 10th, 20th, 30th and 40th pre-
dicted frame correspondingly.
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Ground Truth MLP AvgPool Laplace Dirac

Figure 7: Qualitative comparison of different models. We plot 1th, 10th, 20th, 30th and 40th pre-
dicted frame correspondingly.
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Ground Truth MLP AvgPool Laplace Dirac

Figure 8: Qualitative comparison of different models. We plot 1th, 10th, 20th, 30th and 40th pre-
dicted frame correspondingly.
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Ground Truth MLP AvgPool Laplace Dirac

Figure 9: Qualitative comparison of different models. We plot 1th, 10th, 20th, 30th and 40th pre-
dicted frame correspondingly.
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Ground Truth Laplace Dirac

Figure 10: Dirac-based model visually outperforms Laplace-based models in the regions of high
mean curvature.
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Figure 11: From left to right: Laplace, ground truth and Dirac based model. Color corresponds to
mean squared error between ground truth and prediction: green - smaller error, red - larger error.
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Figure 12: From left to right: set-to-set, ground truth and Dirac based model. Color corresponds to
mean squared error between ground truth and prediction: green - smaller error, red - larger error.
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