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Abstract

The supplementary material consists of three parts. In the first part, we provide insights on our framework by discussing
the expressiveness of covariance descriptors in RKHS. In the second part, we provide more discussion on the experiments. In
the third part, we prove all the mathematical results presented in the paper.

1. Discussion on RKHS covariance descriptors

Given RKHS data matrix ®x = [¢(z1), ¢(z2), ..., ¢(z )], the maximum likelihood estimation of the RKHS covariance
descriptor is

1 N
MC = 3 6w — ) olo) = ] = xR 8%, M

where i = 4 Zfil #(x;) is the empirical mean of samples. If we use the linear kernel, i.e., k(Z,¥) = &', then the
corresponding feature map is just the identity function, i.e., () = &. As a result, the expression (1) degenerates to the
MLE of covariance matrices in R™. For the computationally efficient estimation (See Section 3.2 in the paper), we have the
same explanation. Therefore, RKHS covariance descriptors are the generalization of covariance matrices.

From the standpoint of kernel methods, with the nonlinear kernel, e.g., the RBF kernel, RKHS covariance descriptors,
which can capture nonlinear structure and higher-order correlations, are more informative than the covariance matrices.
When aligning two infinite-dimensional covariance descriptors, we in fact match infinitely many orders of statistics.

Similar strategy of employing RKHS covariance descriptors to characterize a set of samples can be found in [, 3], where
the authors represent each image by a covariance descriptor in RKHS and quantify the discrepancies between covariance
descriptors to classify images.

2. Discussion on the experiments
2.1. More about the datasets

Fig. 1(a) shows sample images in the COIL20 dataset. For each object in COIL20, we provide one example image of the
72 total. Fig. 1(b) shows sample images from the monitor category in the Office-Caltech dataset.
Table 1 lists the top categories and subcategories in the 20-Newsgroups dataset.

2.2. Visualization using kernel PCA

We use kernel principal components analysis [4] (kernel PCA) to visualize source and target samples in RKHS. We
implement experiments on a cross-domain dataset generated from 20-Newsgroups. The source dataset consists of four
subcategories of Comp and Rec: comp.graphics, comp.sys.mac.hardware, rec.sport.baseball, and rec.sport.hokey. The tar-
get dataset consists of the other four subcategories: comp.os.ms-windows.misc, comp.sys.ibm.pc.hardware, rec.autos, and
rec.motorcycles. So there are 970+958+991+997 = 3916 samples in the source domain, and 963+979+987+4993 = 3922
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Figure 1: (a) Sample images from the COIL20 dataset. (b) Sample images from the Office-Caltech dataset.

Table 1: Top categories and subcategories in the 20-Newsgroups dataset. All features have a dimensional of 25,804.

Top Category Subcategory Number of Samples
comp.graphics 970
Comp comp.os.ms-windows.misc 963
comp.sys.ibm.pc.hardware 979
comp.sys.mac.hardware 958
rec.autos 987
Rec rec.motorcycles 993
rec.sport.baseball 991
rec.sport.hokey 997
sci.crypt 989
Sei sci.electronics 984
sci.med 987
sci.space 985
talk.politics.mideast 940
talk.politics.misc 774
Talk talk.politics.guns 909
talk.region.misc 627

samples in the target domain. We employ the RBF kernel, and visualize the coefficients of RKHS samples with respect to
the first three principal components. Fig. 2(a) shows the results with the non-adapted kernel matrix K. We can see that the
source and target distributions are very different. Fig. 2(b) and Fig. 2(c) show the results with the domain-invariant kernel
matrices WCK and OTK (see Section 5 in the paper), respectively. From Fig. 2(b) and (c), we conclude that after “moving”
the source data by the kernel whitening-coloring map or the kernel optimal transport map, the transformed source samples
and target samples are closely distributed in RKHS. In addition, we note that the recognition accuracies with non-adapted
kernel matrix K and domain-invariant kernel matrices WCK and OTK are 61.19%, 94.11% and 95.99%, respectively. The
highly superior performances of our approaches demonstrate the effectiveness of aligning covariance descriptors.

2.3. Out-of-sample generalization on the Reuters-21578 dataset

In this subsection, we measure our approaches’ ability to generalize out-of-sample patterns. We follow the experimental
protocol in [2], and conduct experiments on the preprocessed Reuters-21578 datasets. To train the model, we randomly
select 500 labeled samples from the source domain and 300 unlabeled samples from the target domain. We test the model
on the remaining unlabeled samples in the target domain. We repeat the above procedures 500 times, and report the average
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Figure 2: We implement experiments on a cross-domain dataset generated from 20-Newsgroups. We use kernel PCA [4] to
visualize the data in RKHS. (a) Visualization of the source and target samples with the non-adapted kernel. (b) Visualization
of the transformed source and target samples with the domain-invariant kernel WCK. (c) Visualization of the transformed
source and target samples with the domain-invariant kernel OTK.
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Figure 3: Accuracies and confidence intervals in recognizing out-of-sample data of the Reuters-21578 dataset. For all four
methods, we use the linear kernel.

accuracies and standard errors. In these experiments, we compare our approaches with only the standard SVM and TCA,
both of which possess generalizability. The parameters are set to be the same as those in the transductive setting. In Fig. 3
and Fig. 4, the experimental results with the both linear kernel and RBF kernel show that our approaches KWC and KOT
outperform TCA and SVM with statistical significance.
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Figure 4: Accuracies and confidence intervals in recognizing out-of-sample data of the Reuters-21578 dataset. For all four
methods, we use the RBF kernel.

3. Proofs of the mathematical results in the paper
We first provide some useful lemmas (corollaries), which will be frequently used.

Lemma 1. Let Hy and Hs be two separable Hilbert spaces. Let G : H1 — Ha be a linear operator with finite rank, and let
G* : Ho — Hy be its adjoint operator. Then Im(G) = Im(GG*).

Proof. We need to show that Im(G) C Im(GG*), and Im(GG*) C Im(G).

1. Since Im(G) = Ker™(G*) and Im(GG*) = Ker™[(GG*)*] = Ker(GG*) ', to obtain Im(G) C Im(GG*), it is
sufficient to show that Ker(GG*) C Ker(G*). Vv € Ker(GG*), GG*v =0 = (GG*v,v)3, = (G*v,G*v)y, =
0 = G*v=0 = v e Ker(G*). So Ker(GG*) C Ker(G*).

2. Yv € Im(GG*), there exists w € Ha, such that v = GG*w. Writing v = G(G*w), we have v € Im(G). So
Im(GG*) C Im(G).

O

Lemma 2. Let Hy and Hs be two separable Hilbert spaces. Let G : H1 — Ho be a linear operator with finite rank, and
let G* : Hy — Ha be its adjoint operator. Let {\,(G*G)}}._, and {or(G*G)}}._, be the positive eigenvalues and the
corresponding orthonormal eigenvectors of the operator G*G. Then,

Gpn(G"G) _ Gor(G°G)
VARGEG)  /A(GFG)

IGiven two Hilbert spaces 1 and H2, and a linear operator G : H1 — H2, the kernel space of G is defined as Ker(G) = {v € H1,Gv = Oy, 1

2

GG* = M(G*G)
k=1




is the orthogonal eigen-decomposition of the operator GG*.

Remark 1. The tensor product ® is defined such that (u ® v)w = u{v, w)s, Vu, v, w € H, which is the analogy of the outer
product in R", i.e., 4 @ ¥ = uv”’,Vu,T € R™. In our paper, these two expressions u @ v and uwv ,\Yu,v € H, have the
same meaning.

Proof. {\(G*G)}};_; and {¢k(G*G)}}._, are the respective eigenvalues and eigenvectors of G*G. Then G*Gyy(G*G) =
M (G* Q)i (G*G). After applying the operator G on both sides, we obtain GG*Gyi(G*G) = M\ (G*G)Gpr(G*G). So
{ A (G*G)}}._, are the positive eigenvalues of GG*.

To show that {Gyi(G*G)};._, are eigenvectors of GG*, we need to show that Gy, (G*G) is nonzero, Vk = 1,2,...r.
Suppose Gy (G*G) = 0, then G* G (G*G) = M\.(G*G)pr(G*G) = 0, which implies that ¢ (G*G) = 0, contradicting
the fact that 1 (G*G) is an eigenvector. So {Gyi(G*G)}_, are the eigenvectors of GG*.

We also need to show {\;(G*G)}}._, are the whole positive eigenvalues of GG*. It is equivalent to showing that if X is
an positive eigenvalue of GG*, then A is also an eigenvalue of G*G. To achieve this, we can just repeat the above procedure.

Finally, we need to show that {f’}%}z:l are orthonormal. For any k,l =1,2,...;7,
k

GonlGG) GonlGTG), L
VGG WGe) T e

- %@k(e*m,/\k(G*G)%(G*G»Hl 1,
or(G*G) G*Gpi(G*G)

Ger(G*G) G (G*G) or(G*G) i (G*Q)

( : )1, = ; ) = (GG ; ), = 0.
VA(GEG) /N (G*G) VAGHG) /N(G*G) VARG G) /N (G*G)
O
Corollary 1. The projection operator Pgg+ on the subspace Tm(GG*) is
. Go(G*G) Gor(G*G)
Poc- =3 | —] o] — ]
= VAR(GHG) M(G*G)
- * — * * * (3)
=G M(G'G) (G G) @ pr(G*G)] G
k=1
=G(G*G)'G*.
Proof. From Lemma 2, we have that {f/%}};:l are the orthonormal basis of Im(GG*). We can obtain Pg» imme-
diately. O
Corollary 2. The square root of the operator GG* is
Sl e n1d  Gor(G*G Gon(G*G
(GG =) [M(GQ)]* | “*ﬁ®[k(*ﬁ
= VMGG /(GG
- * -1 * * * (4)
= G[Y (G Q) 2ph(G"G) @ pi(G* Q)] G
k=1
=G(G*Q)=2 G
Proof. Immediately by Lemma 2. O
Corollary 3. The Moore-Penrose inverse of the square root of the operator GG* is
ail o o n1—1 Gor(G*G Gor(G*G
(GG*)t> :Z[/\k(G G)] 2 il - ) ® [ at - )]
= VGGV A(GG)
)

= G[D MGG k(G G) @ (G G)] G
k=1

= GG G)E G .



Table 2: The list of notations in the paper and the supplementary material

RKHS Hic centered kernel matrix C'x x Cxx=J ﬁ KxxJn,
kernel function k centered kernel matrix Cyy Cyy = qu\;t KyydJn,
implicit feature map 1) centered kernel matrix Cy x Cyx = J}\;t KyxJn,
identity operator in H Ty top d eigenvalues and eigenvectors of C'x x (Ax,Vx)
source samples number N top d eigenvalues and eigenvectors of C'yy (Ay,Vy)
target samples number Ny matrix Wy Wx =Jn, Vx(Ig — pA)_(1 )%
source samples in H x Dy matrix Wy Wy = Jn, Vv (Ig — pA;l)%
target samples in Hx Dy matrix Cyy C%y = W};KXY Wy
Ns x N centering matrix | Jn, = \/%(I - 1\}5 117) matrix C¥ 5 Céy =(Cyy)T
Ny x Ny centering matrix | Jy, = ﬁ([ - Nitii’T) matrix B B=Cyx(Cxx + pINS)*%
kernel matrix K K =oLT P 1
kernel matrix Kij Ki(/i = @{%@j matrix D D= [C;ﬂ;’UX C{y +o(Ay —ply)] "2
kernel matrix Ky x Kyx = oL dx Wy Ky xJN,

Proof. Immediately by Lemma 2.

O

Lemma 3. Let H be a separable Hilbert space. Let 11,1, ..., Y, be n elements in H. We define the operator ¥ : R" — H
as U(x) =Y i zih;, Vo € R™. Then U1 : H — R™ defined as T (u) = [({1, u)w, (Y2, W) n, o (Yn, whp] T, Vu € H is

the adjoint operator of U, i.e., U* = o7,

Proof.

Ve e R" Vu e H, (¥(x),u)y = Z%Wn@?—t = (x, " (u)). (6)

i=1

O

Note that if H1 and H- are Euclidean spaces, say R™ and R™2, then the operator G : H, — Hs is just an ny X nq matrix.
All the above conclusions still hold. In the next section, we provide the proofs of all mathematical results in the paper.

For convenience, we list the relevant notations in Table 2.

3.1. Proving Theorem 1

1 1

In R™, the whitening-coloring map is Tywc = X2 (22)F.

Theorem 1. [fTm(%,) C Im(X,), then Twe X Tk = .

1

Proof. Substituting Tywe = 32 (X2)T into the left part, we have

~ ~ 1 1 1 1 T 1 1 1 1 1 1
Twe . To = [B7(22)1]2,[22(22)1] =27(22)'8,(22)'8f =8P =%, ™

where P is the projection matrix onto the image space Im(X;), and the last equality holds because Im(X;) C Im(X;). O

3.2. Proving the equivalence between two expressions of the optimal transport map

Given two positive definite covariance matrix 3; and X, we have

1 1 1 1 1 _1 1 11
Y (SIE,EF) IR =X, 2 (DN, 22)IX,

N

®)




Proof. We write ; = X7 (3?2)7, and then substitute it into the right part of (8). We have

1 1 1 4 _1 1 1 1 1 1
3,2 (TEE X)), 2 =3 2[(2225)(2325 T]2 (9a)
1 1 1 1 1 1 1
=3 =) [(Bis)T(2s )] M(ErEp)tEs e (9b)
_ 2;%2525(25&25)*%2?2?2;% (9c)
- B (2 m,5F) e, (%)
where (9b) holds because of Corollary 2. O]

3.3. Proving Theorem 2

N P 1 1
In R™, the optimal transport map is Tor = X2 (22X, 22)2 32,

Theorem 2. If Ker(X,) NIm(X,;) = {6} then we have TOTESTgT =3,

Proof. Let3; =V, Ay anw where A is a diagonal matrix whose diagonal terms are the r positive eigenvalues and V'
consists of the corresponding eigenvectors.

1
(I Claim: rank(X2V) =
1 l
Let vy, Us, ..., U, be the columns of V. It is sufﬁcient to show that 32 v, 25 Vs, ..., 22 U, are linearly independent.
Suppose there exist A1, A, ..., A, such that A\ 32 H vy + /\22 Vg + ...+ N\, 22 ¥, = 0. Then we have that \; ¥ + A\oUo +
1

et AU, € Ker(22) = Ker(Xy). Since Im(Et) = Span{v, Vs, .., U, }, 1mmed1ately, )\1'01 +XoUo+ ...+ A0, € Im(Xy).
By the condition that Ker(3,) N Im(X,;) = {0} we have AU —|— XoTs + ... + AT, = 0. And @1, s, ..., T, are linearly

independent = A\ = Ao =... =\, = 0. So Es 1, 23 Vg, ... Es v, are lmearly independent.
N ~ ~ 1 1 1 1
(II) Now we start to prove that TOTESTgT = 3;. Substituting ToT = X2 (22 X, 37 )T% 337 into the left part, we obtain

. Lo L1 11t 11 R, 1 1
TorXTor =272 (X22X2) 222832 (B2 2,X72) 22 = X2 P.X%2, (10)

1 1 1 1 1 1 1 1
where P, is the projection matrix onto Im(X7 %,37) = Im[(2732)(2722)T]. We set G = B2 %2, then we obtain
111 1. 11
P, =%?%2(22%,%2)IZZ32 by Corollary 1. So,

TorS AL, = SIsixi(Dix,3i)inisiy! - £,33(2i s, 300l s, (1)

Substituting 3; = Vi, Ayxr V.4

" i0to the above, we get

TorS.T5r = VAVTE%(E%VAVTE%)TzévAVT
= VA3 (ASVTE )[(A oA VED Y ) (AFVTE )] (AVTS )TA - "
=VA§PA§VT7

1

where P is the projection matrix onto Im(A2 VI, VAz) = Im(A2VTXZ), and the last equality in (12) holds because
1 i, . 1 i .. .

of Corollary 1. Note that AzVTX2 is an r x n matrix, so Im(A= VTEﬁ) C R". In addition, by the above claim,

rank(A2 VTEZ) = rank(VTE2) = r, so we have that Im(AlVT27) Rr Therefore the projection matrix P is just

the identity matrix I,.«,.. Finally, Eq (12) can be written as TOTE TOT =VA: 2., A2 VT = VAVT = 3, and we get
the desired conclusion. O]



3.4. Proving Proposition 1

The maximum likelihood estimations of source and target covariance descriptors are given by

MO, = (PxJIn. ) (@xIn.)T + ply, (13a)
MC; = (By Iy, )(Py TN, )T (13b)
Proposition 1. With the maximum likelihood estimators (13), the kernel whitening-coloring map is given by
N 1 1 1 1
KTwe = (MCy)? (MCL) = by Jy,Cl2, [Cy x Ady, ®% + %JM@Q, (14)
where Cyy = J]?,tI{nyNt and Cy x = J]QKYXJNS are centered kernel matrices, and A = 22:1 i(\/)\ijp _
\})6;617,{, and { A, Uy }}._, are positive eigenpairs of Cx x.
Proof. We substitute maximum likelihood estimators (13) into the expressions of kTwc, and then we have,
. 1 _1
kTWC = [(q)yJNt)(q)yJNt)T] 2 [(q)xJNS)(q)XJNS)T + PIH;C] 2. (15)

For simplicity, we set G = ®xJy,, then by Lemma 3, G* = (®xJy,)T. Let {\}r_, and {@)},_, be the positive
eigenvalues and the corresponding orthonormal eigenvectors of G*G = (®xJy, )T (®xJn,) = Cxx. Then by Lemma 2,

{ ks G”’“ },C , are the positive eigenpairs of GG*. Let {@/}k}(gm;(ff) be a set of orthonormal vectors, such that

Gv, G, G,

{r \/> \/}awT+17’l/)T+27~“} (16)
is a complete orthonormal basis of Hx. Then the identity operator [, can be written as I, = > ,_, \G/’% 3‘)% +
?mTffC)i/) ® 1. Therefore, we have
[(@xIN)(@xIn)" + plue] * (17a)
= (GG" + phy, )2 (17b)
Gvk Gvk 1
k= +ply] 2 (17¢)
Z \/7 \/7 /C]
r dim(Hx)
G’Uk G’Uk 1
= A+ p Q@ — + PVE ® Y| * (17d)
[,;( iy erechv,v 2‘1 ]
dim(Hx)
1 Gvy, G’Uk
® 17e
SR o s
1 G'Uk G'Uk 1 G’Uk Gvk
(17£)
N RL O T ot
T 1 r 1
=G BL)G* + — Iy — G  —0p¥F)G* (17g)
(; )\k;\/)\]gT k \/’BI: K (k=1 )\k k) ]
. 1
=GAG" + %IH,C (17h)

1 :
=OxJy ATL % + %IHK. (17i)



Substituting (171) into (15), we get

=

~ _1
kTwe = [((I)YJNt ) ((I)yJNt)T] [(CI)XJNS)((I)XJNS )T + PI’H;C] 2 (18a)
1 1
= [(@yIn)(@yIn,)"]? (Px TN, ATN Ok + —T,) (18b)
VP
1 1
= Oy Iy, [T}, 21 Py TN, | ts JR, 3 (exIn, ATL % + %IH,C) (18c)
1 1
:<I>yJNtC;r/23/ [nyAJNS(I)iJrfJNt(I)g], (18d)
VP
where (18c) holds because of Corollary 2. O
3.5. Proving Proposition 2
The computationally efficient estimations of source and target covariance descriptors are given by
EC,s = (PxWx)(@xWx)" + ply, (19a)
EC; = (®y Wy )(dy Wy )T, (19b)
Proposition 2. With the computationally efficient estimators (19), the kernel optimal transport map is given by
~ L 1
KTor = (ECy)? [(EC)? (EC,)(EC)? |2 (EC))? = By Wy [CExCYy + p(Ay — pI)] FWERL,  (20)

where CY y = W}TKYX Wx and C'%y = (C{,”X)T, and Ay is the diagonal matrix storing the top d eigenvalues of C'yy.

Proof. We substitute the computationally efficient estimators (19) into the expression of k7o, and then we have,

N l
KTor = (Py Wy W 0F) 2 [(Dy Wy WL L) 2 (0 x Wx WEOL + plhy, ) (0y Wy Wi BT 2 ] 2( By Wy WEDT)z

ey

We observe that ECy = ®x Wx WL®L + ply, . is strictly positive definite, which implies that there exists an operator A

(e.g., A= (ECS)%), such that AAT = EC,. Then k7o can be written as

KTor = (0y Wy WL )2 [(By Wy Wi L) 2 (AAT)(By Wy WL @T)2] ™2 (0, Wy Wi aT) 2

13

= (By Wy W aL)z <[(<1>YWYW$<I>£)5A} [(Dy Wy W L) 7 A] T) (Oy Wy Wi oT)2

;
= (Oy Wy WEDT) 2 [(By Wy Wi o])* A]([(@YWYWY%%%A} [(@YWYWY%T)EA})

[(‘byWng‘I’%%A]T(@YWYWE‘P):C)%
= (Dy Wy WE L) A[AT Dy Wy W ST A% AT (0 W W o)
= oy Wy (WO A) [(WEST AT (WL A (W oL A)T Wi ol
= oy Wy [(WTOT AYWTaT A)T] W ol
= Oy Wy (WL DT AAT®y Wy ) s Wl ol
= Oy Wy [WEOT (Dx Wx WIOT + phy, )0y Wy ] W 0T
— By Wy (CExC¥y + pWy Kyy Wy) W el

M)

(22a)

(22b)

(22¢)

(224d)
(22e)
(22)

(22¢g)
(22h)

(22i)
(22j)




where (22¢) and (22g) hold because of Corollary 3. Next we prove that Wg KyyWy = Ay — ply:

Wy Kyy Wy = [JNtVY(Id - PA;II)%}TKYY [JNtVY(Id - pA;l)%}
= (I — pAY )PV Cyy Vi (14 — pASY)?

(23)
= (Is — pAY")? Ay (I — pAS})?
= Ay — ply.
After substituting (23) into (22j), we obtain the desired result. L]
3.6. Derivations of the domain-invariant kernel expressions
The domain-invariant kernel AK is given by
. % T T T
sk =3 ail = e e @

where the symbol A represents the way of “moving” the source samples, i.e., A = WC or OT, and ¥,_,; denotes the
transported source samples, i.e., ¥s_,; = KTa(¥y), and ¥ and ¥, denote the centered source samples and target samples,
respectively.

Using the kernel whitening-coloring map (14), we get
. 1
U,y = Klwe(¥,) = /Ny Iy, Cl4 B
WCK,, = N,B'B (25)
- 1 1
WCK,s = /N;N;C¢y B = /N;N,Uy A;UY B,
where B = Cyx(Cxx + pI NS)*%, and (Uy, Aé) stores the top d eigenpairs of Cyy. Note that, in practice, in order to

exploit the principal components and reduce the computational complexity, we artificially select d to be a small integer, i.e.,
d < Ny.

Proof.
(I) The transported source samples are
Vst = kTwe(Vs) (26a)
1 1
— By Jn,CL3 [Cy x AN, ®% + %JN,©$] (VN ®x ) (26b)
1 1
= /N, &y Jy,C}2 Cy x(ACxx + %INS). (26¢)

Now we consider the term AC x x + ﬁI N, Recall that {¥;, U5, ..., U, } are C'x x s eigenvectors, the corresponding eigenval-
ues of which are positive. Let {1, 42, ..., Un, } be a set of orthonormal vectors, such that {@, ¥a, ..., Oy, U1, Uri2,



.., U, } is an orthonormal system for R™Vs. Then, we have

1 1 1
AC + — E U v;. C + —1TI
A \[ kl/\k Ny \f)kk = \/ﬁN
1 1 1

:Efif—ﬁc )"+ —1In,

,c:lAk( nrp  yp HOxxt) Iy

s

S g ey 3

k r+1

1
G o
VU, + —

o R
[Z(Aker)vkvk + Z puyty | 2

k=1 k=r+1
1

=(Cxx +plIn,)" 2.
Wiite B = Cyx (Cxx + pIy.)" %, then U, ,, = kTwe(0,) = VNo@y Jy,Cl2, B.
(I
1 1
WCK,, = V7,0, = (v/N,®y Jy,Cl3 B)T (V/N,®y Jx,Cl3 B)
— N.BTC!%,J% 070y Jy,CI3. B = N,B" PyyB = N,B”B,

(27a)

(27b)

27¢)

(27d)

(27¢)

(27%)

(28)

where Pyy is the projection matrix onto Im(Cyy) = Im(J3, ®7), and the last equality holds because Im(B) C Im(Cy x) C

Im(J, 7).

111
o WCKy, = U0 = (vN@y In,) " (VNo@y G4 B) = V/NN.CL3. B (29)
O
Using the kernel optimal transport map (20), we get
Uy =kTor(¥,) = /N, &y Wy D
OTK,, = NSDT(AY — pI))D (30)
OTK;; = /N,N,Jy,KyyWyD,
where D = [C¥C%y + p(Ay — pLa)] P WT Ky x Iy,
Proof.
(I) The transported samples are
Uy = KTor(W,) = Oy Wy [CEx Cy + p(Ay — pL)] P WEST (VN,x I,) )
= /N,y Wy [CExC¥y + p(Ay — pId)f%WgKYXJNS = /N, @y Wy D.
ey
OTK,, =" v, ,, = (/N,®yWyD)"(\/N,®y Wy D) = NND"W{L KyyWy D = N,DT (Ay — pI;)D, (32)
where the last equality holds because of (23).
11
. OTK;s = U] U, = (VN @yJn,)" (VN;®y Wy D) = /NNy Jy, Kyy Wy D. (33)
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