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1. Appendix

In the appendix, we provide additional qualitative and
quantitative results for our Polygon-RNN++ model. In par-
ticular, we show an additional ablation study that emphasizes
the importance of the evaluator network. We also illustrate
the performance of our model across the course of training
during the RL training phase. We provide further details
on automatic full-image object instance segmentation. Fi-
nally, we provide several qualitative examples for both the
automatic and interactive modes.

Training with RL. In Fig. 1, we plot the performance in
terms of mean IoU during RL training on Cityscapes [1].
Additionally, we show the average length of polygons. Note
that nothing in our model prevents predicting polygons that
include self-intersection. We also investigate this issue in
this plot. In comparison with the MLE model, we can see
that we obtain an increase in terms of mean IoU. Note also
that by directly optimizing IoU, the average length of the
predicted polygons and the number of polygons with at least
one self-intersection decrease.

Evaluator Network. In Table 1 we compare different de-
coding strategies, and showcase the importance of the eval-
uator network. We separate two cases: handling multiple
first vertex candidates, as well as multiple sequences (poly-
gons) that follow from each first vertex candidate. We see
that while beam search for both the first vertex and the full
sequence outperforms greedy decoding, the improvement is
minor (0.5%, second row). Following K first vertices using
greedy decoding for the sequence and using the evaluator
network to choose between the K polygons results in 2.2%
over beam search (third row). Using beam search for the
sequence (and evaluator network to choose between the K
polygons in the end) further increases performance (0.3%,
fourth row). In the last row, we use beam search until the last
predicted polygon vertex, and use the evaluator network to
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also choose between the K last vertex candidates (for each
first vertex candidate). This gets us another 0.2% (last row).

Output Resolution and Sensitivity to T of GGNN. Note
that our GGNN formulation is efficient and can handle large
output sizes. We experimented with two output resolutions,
112× 112, and 224× 224. The result for the 224× 224 was
only 0.02% better than that of 112×112, but required longer
training times. Thus, our choice in the paper is 112× 112.
In Table 2 we report results for different T (number of prop-
agation steps), showing stable results across several options.

Automatic Mode in Cityscapes. In Figure 3 and 4 we
provide a qualitative comparison between our model in auto-
matic mode and the ground-truth polygons. The first column
illustrates the predicted full image while the second shows
the GT polygons. We remind the reader that here, our model
exploits ground-truth bounding boxes.

Full-image Instance-Level Segmentation on Cityscapes.
We evaluate our model on the task of instance segmenta-
tion. In our scenario, this can also be seen as an automatic
full image annotation task. Since PolygonRNN++ requires
bounding boxes, we use FasterRCNN [6] for object detec-
tion on the whole image. In particular, we train the best
FasterRCNN model of [4] (pre-trained on MS-COCO) on
the Cityscapes dataset (fine annotations only). The predicted
boxes are then fed to our model to produce polygonal in-
stance segmentations. Evaluating Polygon-RNN++ with
FasterRCNN on the Cityscapes test set achieves 22.8% AP
and 42.6% AP50.

A major limitation of our model in this scenario is that
it only predicts one polygon per bounding-box. As a re-
sult, multi-component object-masks, coming from occluding
objects, are heavily penalized by the evaluation procedure.

In order to tackle this issue, we further use semantic
information. Specifically, we use the predicted semantic seg-
mentation results from [9]. We then perform a logical “and"
operation between the predicted class-semantic map and our
instance polygonal prediction. Following this scheme, we
achieve 25.49% AP and 45.47% AP50 on the test set.
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Figure 1: Performance during RL training on our validation set on the Cityscapes dataset.
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(a) T2 = 0.7
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(d) T2 = 1.0

Figure 2: Interactive Mode on Cityscapes for different values of T2

In Figure 5, we show more qualitative results of our full
instance segmentation model (i.e. with boxes from Faster-
RCNN). Results on the Cityscapes Instance Segmentation
Benchmark are reported in Table 3.

Interactive mode in Cityscapes. Figure 2 shows the his-
togram of the number of corrections (clicks) for different
values of T2 and T . It also shows the average IoU and the
average number of clicks for the given thresholds. We can
see that most of the predictions can be successfully corrected
with 5 clicks. Figure 7 shows a few qualitative examples
of our interactive simulation on the Cityscapes dataset. The
automatically predicted polygons are shown in the first col-
umn while the second column shows the result after a certain
number of corrections. The last one depicts the ground-truth
polygons. For all instances, we show the required number of
clicks and the achieved IoU.

Automatic Mode in Out-of-Domain Imagery. In Fig-
ures 8, 9, 10, 11, 12 we analyze the qualitative performance
of our model on different datasets that capture both shifts
in environment KITTI [2] and domain (general scenes [10],
aerial [8], medical [5, 7, 3]). We emphasize that here we use
our model trained on Cityscapes without any fine-tuning
on these datasets. The first column shows prediction in au-
tomatic mode while the second column visualizes the GT
instances. Note that in some of these datasets we do not have
GT polygons as only segmentation masks are provided. In
those cases, the GT image is labeled as Mask and the number
of clicks is not shown.

Automatic Mode and Online Fine-Tuning. Figure 13 il-
lustrates the performance of the proposed Online Fine-tuning
algorithm on different datasets. We first show the prediction
of the model without any fine-tuning. We then illustrate
the automatic predictions of the fine-tuned model. The GT



First Vertex Sequence Bicycle Bus Person Train Truck Motorcycle Car Rider Mean

Greedy Greedy 57.57 75.74 68.78 59.40 75.97 58.19 75.88 65.47 67.13
BeamSearch (BS) BS 58.50 74.43 68.68 61.73 75.90 58.44 75.51 66.73 67.49
Eval. Net Greedy 61.62 79.31 70.37 62.17 77.45 60.71 77.80 68.30 69.72
Eval. Net BS 62.04 79.19 70.87 62.61 77.81 62.00 77.87 68.25 70.08
Eval. Net BS- Eval. Net 62.34 79.63 70.80 62.82 77.92 61.69 78.01 68.46 70.21

Table 1: The role of the evaluation network. Here Greedy denotes greedy decoding of the polygon, and BS indicates beam-search. We use K = 5.
Performance (IoU in %) in automatic mode for all Cityscapes classes.

TGGNN (# of propagation steps) 3 5 7
AVG IoU (%) 71.37 71.38 71.46

Table 2: Performance (automatic mode) for different number of propagation
steps (TGGNN ) in GGNN. Experiment done on Cityscapes. We report the
performance averaged across all categories.

Model AP AP 50 %
PANet 36.4 63.1
Mask R-CNN 32.0 58.1
SegNet 29.5 55.6
GMIS 27.6 44.6
PolygonRNN++ 25.5 45.5
SGN 25.0 44.9

Table 3: Performance on official Cityscapes Instance Labeling benchmark
(test). We report best result for each method.

instances are shown in the last column. In all cases, the
fine-tuned predictions are generated after the last chunk has
been seen (illustrated in Figure 9 of the main paper).

Extended Evaluation on ADE Val Set. In Figure 6, we
report the performance of PolygonRNN++ on the ADE vali-
dation set without any fine-tuning, and running in automatic
mode (with ground-truth boxes). Note that, for the ease of
visualization we only illustrate the top and bottom 50 cat-
egories, sorted by performance. Only instances with more
than 20 categories are shown.
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PolygonRNN++ (with GT boxes) Human Annotator
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0 clicks 417 clicks
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Figure 3: Automatic mode on Cityscapes dataset: Qualitative comparison between a human annotator vs PolygonRNN++ in automatic mode on Cityscapes.
This model exploits GGNN to output a polygon at a higher resolution. Note that our model relies on bounding boxes.



PolygonRNN++ (with GT boxes) Human Annotator
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Figure 4: Automatic mode on Cityscapes dataset: Qualitative comparison between a human annotator vs PolygonRNN++ in automatic mode on Cityscapes.
This model exploits GGNN to output a polygon at a higher resolution. Note that our model relies on ground-truth bounding boxes.



Figure 5: Full-image instance segmentation: Qualitative results of full image prediction using Polygon-RNN++ with boxes from Faster-RCNN
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Figure 6: Automatic mode on ADE val: Performance of PolygonRNN++ without fine-tuning on ADE validation set. Only categories with more than 20
instances are shown. Left: Top 50 categories in terms of IoU performance. Right: Bottom 50 categories in terms of IoU performance.



Figure 7: Interactive mode on the Cityscapes dataset. Here we show only predicted and corrected vertices at the 28× 28 resolution (no GGNN is used
here). Notice a major failure case in automatic mode in the bottom right example (where self-intersection occurs), which however gets quickly corrected.
Note that the annotator is simulated (we correct a vertex if it deviates from the ground-truth vertex by a threshold T ).



Figure 8: Cross-domain without fine-tuning: trained on Cityscapes→ tested on ADE20k, automatic mode. Qualitative comparison between a human
annotator vs PolygonRNN++ in automatic mode in ADE20K without fine-tuning. Note that our model relies on bounding boxes. Notice also that in some
cases our predictions achieve a much higher level of detail than human provided annotations.



Figure 9: Cross-domain without fine-tuning: trained on Cityscapes→ tested on Rooftop-Aerial, automatic mode. Qualitative comparison between a
human annotator and PolygonRNN++ in automatic mode in the Rooftop-Aerial dataset without fine-tuning. Note that our model relies on ground-truth
bounding boxes.

Figure 10: Cross-domain without fine-tuning: trained on Cityscapes→ tested on KITTI, automatic mode. Qualitative comparison between a human
annotator and PolygonRNN++ in automatic mode in KITTI without fine-tuning. Note that our model relies on ground-truth bounding boxes.



Figure 11: Cross-domain without fine-tuning: trained on Cityscapes→ tested on Cardiac MR, automatic mode. Qualitative comparison of ground-truth
masks vs PolygonRNN++ in automatic mode in the Cardiac MR dataset [5, 7] without fine-tuning. Note that our model relies on bounding boxes.

Figure 12: Cross-domain without fine-tuning: trained on Cityscapes→ tested on ssTEM, automatic mode. Qualitative comparison of ground-truth
masks vs PolygonRNN++ in automatic mode in the ssTEM dataset[3] without fine-tuning. Note that our model relies on ground-truth bounding boxes.



Figure 13: Cross-domain with fine-tuning, automatic mode. Qualitative results on different out-of-domain datasets after using the proposed Online
Fine-tuning algorithm.



Figure 14: Upscaling with the GGNN: Performance of PolygonRNN++ after and before upscaling the output polygon with GGNN Left: Output of
PolygonRNN++ before upscaling Center: Output of PolygonRNN++ after GGNN Right: GT


