NestedNet: Learning Nested Sparse Structures in Deep Neural Networks
[Supplementary Material]

Eunwoo Kim

Chanho Ahn

Songhwai Oh

Department of ECE and ASRI, Seoul National University, South Korea

{kewoolS , mychahn, songhwai}@ snu.ac.kr

Table 1 describes the taxonomy of the Imagenet subset,
named ImageNet-Subtree, which is performed for hierar-
chical classification in the main paper. We also provide
performance curves and implementation details as well as
activation maps for NestedNet in the following sections.

1. Performance Curves

We provide performance curves of NestedNet for train
and test sets in CIFAR-100 while training on the knowledge
distillation problem, where we use the same architecture to
those used in the main paper. Train and test accuracies of
each internal network while learning the nested network,
which are computed in every epoch by averaging for all
batch sets in train and test images, respectively, are shown
in Figure 1. For the experiment, we have empirically found
that the curves obtained from the n-in-1 nested sparse net-
work, whose internal networks are learned simultaneously,
give similar trend to those obtained from the independently
learned baseline networks. Further details and results of the
nested network are described in the main paper.

2. Implementation Details
2.1. CTFAR datasets

We implement NestedNets based on state-of-the-art net-
works such as residual networks (ResNet) [2] and wide
residual networks (WRN) [6]. We follow the practice in
[2] to construct those networks whose number of layers
is 6n,+2, where ny is the number of residual blocks. We
initialize weights in all compared architectures using the
Xavier initialization [1] and train them from scratch. For
NestedNet, we use the SGD optimizer with momentum of
0.9 and the Nesterov acceleration method where the size of
a mini-batch is 128. Batch normalization [3] is adopted af-
ter each convolutional operation and dropout [5] is not used.
The learning rate starts from 0.1 and is divided by 10 when
the number of iterations reaches 40K and 60K, respectively,
and the total number of iterations is 80K. We use a stan-
dard weight decay of 0.0002. The nested structure is imple-

1 L R =y T, —
09t 7 i
7 B it
o8t / ——— 1
S / PR g 7
S F -
0.7]
§ [
= i
3 06} //]
Q {
<osttd |7 NestedNet (WRN-32-4) (|
N NestedNet (WRN-14-4)
0.4 | — — — NestedNet (WRN-32-1) ||
'(NestedNet (WRN-14-1)
03 | | I I I I
20 40 60 80 100 120 140 160 180 200
Epoch
(a) Train
0.8
RPN
0.7 1
’v,\h/“J\v/./-./\.v/‘,
SO6[WAL 1
= ARSI ’ |
o5t il tpe, BRA NS i
§ .,'(,J"'./ """J vy Y
o L |
<04 e NestedNet (WRN-32-4)
i NestedNet (WRN-14-4)
0.3 \j — — — NestedNet (WRN-32-1) [{
1 NestedNet (WRN-14-1)
02l | | | I I I I
20 40 60 80 100 120 140 160 180 200
Epoch
(b) Test

Figure 1. Performance of NestedNet while training on the CIFAR-
100 dataset [4]. (-) denotes the applied architecture.

mented in all layers for adaptive deep compression and in
all residual blocks except the first convolutional and the last
fully-connected layers for the rest of the applications based
on the aforementioned architectures, where we learn dif-
ferent fully-connected weights in the final layer to address
different purposes (e.g., different output dimensionality for
hierarchical classification).

2.2. ImageNet dataset

NestedNet was constructed based on the ResNet-18 ar-
chitecture following the instruction in [2] for the ImageNet

Table 1. Taxonomy of the ImageNet-Subtree dataset. (-) denotes the number of subclasses for each intermediate category.

Superclass H Intermediate class “ Subclass
Natural object Fruit (9) Strawberry, Orange, Lemon, Fig, Pineapple, Banana, Jackfruit, Custard apple, Pomegranate
Vegetable (9) Head cabbage, Broccoli, Cauliflower, Zucchini, Spagl}ettl squash,
Plant Acorn squash, Butternut squash, Cucumber, Artichoke
Flower (3) Daisy, Yellow lady’s slipper, Cardoon
Siberian husky, Australian terrier, English springer, Walker hound, Weimaraner,
Dog (14) Soft coated wheaten terrier, Old English sheepdog, French bulldog, Basenji,
Bernese mountain dog, Maltese dog, Doberman, Boston bull, Greater Swiss mountain dog
. Cat (5) Egyptian cat, Persian cat, Tiger cat, Siamese cat, Madagascar cat
Animal - - - -
Fish (10) Great white shark, Tiger shark, Hammerhead, Electric ray, Stingray,
Barracouta, Coho, Tench, Goldfish, Eel
Bird (10) Goldfinch, Robin, Bulbul, Jay, Bald eagle, Vulture, Peacock,
Macaw, Hummingbird, Black swan
Instrument (10) Grand piano, Drum, Maraca, Cello, Violin, Harp, Acoustic guitar, Trombone, Harmonica, Sax
. Airship, Speedboat, Yawl, Trimaran, Submarine, Mountain bike, Freight car,
Vehicle (10) .
Passenger car, Minivan, Sports car
Artifact . Park bench, Barber chair, Throne, Folding chair, Rocking chair, Studio couch, Toilet seat,
Furniture (10) ..
Desk, Pool table, Dining table
Construction (10) Suspension bridge, Viaduct, Barn, Greenhouse, Palace, Monastery, Library,
Boathouse, Church, Mosque

dataset, where the numbers of channels in the core and
medium level networks were set to quarter and half of the
number of all channels, respectively, for every convolu-
tional layer, as mentioned in the main paper. We set dif-
ferent fully-connected layers in the last output layer as per-
formed in the CIFAR datasets. We use the SGD optimizer
with momentum of 0.9 and the Nesterov method with the
size of a mini-batch of 256 and the weight decay of 0.0001.
The learning rate starts from 0.1 and divided by 10 when the
number of epochs reaches 15K, 30K, and 45K, respectively,
and the total number of epochs is 50K. For the dataset, we
learn nested parameters sequentially from core to full level
for every iteration instead of learning them simultaneously.

2.3. Consensus in NestedNet

For NestedNet-L described in Section 5.4 in the main pa-
per, which incorporates multiple knowledge from all nested
levels, we add a fully-connected layer, called a consensus
layer, to the concatenated vector of all outputs in NestedNet,
and the consensus layer again produces an output vector
whose size is the number of classes. Note that the consen-
sus layer is learned after NestedNet is trained in this work,
but we can learn the whole network including the consen-
sus layer simultaneously. When we address the hierarchi-
cal classification problem for the CIFAR-100 dataset [4] in
Section 5.3 in the main paper, rather than just concatenating
the two level outputs, we collect additional fine class output
(whose dimensionality is 100) in the core level network,
which requires another fully-connected layer in the final
layer in NestedNet to produce an output of different dimen-
sionality, and then learn the consensus layer using concate-
nation of the three outputs (two fine class outputs from both

full and core levels and one coarse class output from the
core level) for better prediction. We also average two fine
class outputs from both level networks to build NestedNet-
A for the hierarchical classification problem. For more ac-
curate inference, one can append more layers with nonlin-
earity in the top of the network, while this practice only
adds a layer without nonlinearity which may not achieve
further performance gain for a certain problem. For Ima-
geNet, we constructed two consensus variants of Nested-
Net in a similar way for CIFAR-100. When handling the
knowledge distillation problem, we use the designed num-
ber of output features learned from NestedNet to construct
NestedNet-A and NestedNet-L. We use the SGD optimizer
without momentum for both knowledge distillation and hi-
erarchical classification in learning NestedNet-L. To yield
the best performance, the learning rate for all consensus lay-
ers starts from 0.1 and is divided by 10 when the number of
iterations reaches 20K, 30K and 40K, respectively, and the
total number of iterations is set to SOK.

3. Activation Feature Maps

Figure 2 shows activation feature maps, which are out-
puts from different layers in NestedNet when feeding train
and test images of the CIFAR-10 dataset [4] to the learned
network. Each row represents the maps obtained in each
network with different nested level from core-level (top) to
full-level (bottom). Note that the maps illustrated here are
printed out using the filters in the current level network,
which do not include the filters already computed in the
sub-level networks, to see what filters in higher level net-
works learn (i.e., increments from the sub-level networks).

= ...
||z, i

HEE BEE REE BEEE

7 2
-
8
5 3
o
1o
@ 0
b E
O e
G e
% E
B B

Li
&

3'

i

2
ENIE BEE 6 M
MIMEE TIRME S5 LA ED

el

Al

o
e

i 4_.:'5 H =
T,

7

i

i

A

B B
e

Figure 2. Activation maps in NestedNet according to different layers on train (first) and test (second to fourth) images for the CIFAR-10
dataset [4]. The maps scaled consistently in layer-wise (left) and the individual maps without keeping the consistent scale (right) are
provided for better understanding. Each row for every image represents the images in each internal network, from core-level (top) to

full-level (bottom). Best viewed in color.

We also provide additional activation maps for the same im-
ages that show the individual images without keeping the
consistent scale when drawing the figures (right column in
the figure), since the filters in higher level networks some-
times produce small values which are difficult to observe as
shown in the left column of the figure. From the figure, we
can see that the learned filters in the higher level networks
also catch the important and complementary features, even
though they are marginal compared to those in the core level
network.

References

[1] X. Glorot and Y. Bengio. Understanding the difficulty of train-
ing deep feedforward neural networks. In Proceedings of the
Thirteenth International Conference on Artificial Intelligence
and Statistics, 2010. 1

[2] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference
on Computer Vision and Pattern Recognition (CVPR), 2016.
1

[3] S. Ioffe and C. Szegedy. Batch normalization: Accelerat-
ing deep network training by reducing internal covariate shift.
In International Conference on Machine Learning (ICML),
2015. 1

[4] A. Krizhevsky and G. Hinton. Learning multiple layers of
features from tiny images. 2009. 1, 2, 3

[5] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Dropout: a simple way to prevent neural
networks from overfitting. Journal of Machine Learning Re-
search (JMLR), 15(1):1929-1958, 2014. 1

[6] S. Zagoruyko and N. Komodakis. Wide residual networks.
arXiv preprint arXiv:1605.07146, 2016. 1

