Supplementary Material: A Prior-Less Method for Multi-Face Tracking in Unconstrained Videos

Chung-Ching LinYing HungIBM Research AIRutgers Universitycclin@us.ibm.comyhung@stat.rutgers.edu

1. Overview

This supplementary material presents mathematical details of Gaussian Process and extends the experimental section presented in the main manuscript.

- 1. Algorithmic details. We describe more algorithmic details and experimnts for Section 3.3 Refinement Based on Gaussian Process (GP) of the main paper.
- 2. Quantitative evaluation. We provide the statistics of both datasets, the definitions of evaluation metrics, and quantitative multi-face tracking results on each video in Section 3.
- 3. Qualitative evaluation. We present sample qualitative tracking results in Section 4.

2. Algorithmic Details

2.1. Asymptotic consistency of GP

In Section 3.3 of the main manuscript, Gaussian Process (GP) models are used to detect outliers. GP modeling is an efficient parametric approach commonly used in spatial statistics and machine learning. Because the information in each image is spatially correlated, a reasonable assumption is that the data in each image is a realization of a GP with unknown parameters:

$$y(\boldsymbol{x}) = \mu(\boldsymbol{x}) + Z(\boldsymbol{x}),\tag{16}$$

According to Mardia and Marshall (1984), the MLE obtained by Equations (13)-(15) are consistent estimators of the underlying true parameters. Define $\hat{\gamma} = (\hat{\theta}', \hat{\sigma}^2)'$ and $\hat{\phi} = (\hat{\beta}', \hat{\gamma}')'$, the follow theoretical properties can be obtained by simple modification of Mardia and Marshall (1984).

Remark 1: Under some regularity conditions given by Mardia and Marshall (1984), $\hat{\phi}$ is a consistent estimator of the true ϕ and it is asymptotically normal distributed. That is

$$\widehat{\boldsymbol{\phi}} \sim N(\boldsymbol{\phi}, B_n^{-1}),\tag{17}$$

where

$$B_n = diag(B_\beta, B_\gamma), B_\beta = X' \frac{\Sigma^{-1}(\theta)}{\sigma^2} X,$$
(18)

and the (i, j)th element of B_{γ} is $\frac{1}{2}t_{ij}$ with

$$t_{ij} = trace(\sigma^2 \Sigma(\boldsymbol{\theta}) V^i \sigma^2 \Sigma(\boldsymbol{\theta}) V^j), \tag{19}$$

where

$$V^{i} = -\frac{\Sigma^{-1}(\boldsymbol{\theta})}{\sigma^{2}} V_{i} \frac{\Sigma^{-1}(\boldsymbol{\theta})}{\sigma^{2}}, \ V_{1} = \sigma^{2} \frac{\partial \Sigma(\boldsymbol{\theta})}{\partial \theta_{1}}, \ V_{2} = \sigma^{2} \frac{\partial \Sigma(\boldsymbol{\theta})}{\partial \theta_{2}}, \ V_{3} = \Sigma(\boldsymbol{\theta}), \ i, j = 1, ..., 3.$$
(20)

Based on the theoretical support from Remark 1, the fitted GP successfully captures the information of each image with a much lower dimension, i.e., 18 parameters in total. Therefore, outlier detection can be efficiently and effectively performed based on the fitted GP parameters.

2.2. Examples of Outlier Detection

Figure 4(a) shows an initial cluster in foot chase video. Each small image is a sample from a face tracklet. We can see the variations of face appearances caused by poor lighting and severe camera motion.

Figure 4(b) shows the outlier detection results. From Figure 4(b), we can see that all outliers of the cluster in Figure 4(a) are detected and only one detection error exists. In general, clustering errors are caused by small, profile, or occluded faces that cannot be distinguished by deep face features. GP model is able to compensate the insufficiency of the CNN-based initialized linking framework and capture the false positive tracklet associations.

(b)

Figure 4: Outlier detection example in Foot Chase video: (a) an initial cluster with noise (b) detected outliers

3. Quantitative Evaluation

In our experiments, we performed the methods in [7] using the source code provided by the authors. (https://github.com/shunzhang876/AdaptiveFeatureLearning).

3.1. Evaluation Metrics

We report tracking results based on the most widely accepted evaluation metrics, the CLEAR MOT [6], including Recall, Precision, F1, FAF, MT, IDS, Frag, MOTA, and MOTP. The definitions are listed in Table 5. The up arrows indicate higher scores are better and vice versa.

3.2. Dataset Statistics

The characteristics of the music video dataset provided by [7] and body-worn camera datasets provided by our paper are shown in Table 6. The body-worn camera dataset brings different challenges from music video dataset. The camera movement is unstable since the camera is mounted on the human bodies. Take the Foot Chase video as an example, the video is about polices chasing and catching a suspect, thus the video has severe camera movements. The video can be found in the link: https://www.youtube.com/watch?v=StBOrFouFmE.

Name	Definition
Recall↑	(Frame-based) correctly matched objects / total ground truth objects
Precision	(Frame-based) correctly matched objects / total output objects
F1↑	The harmonic mean of precision and recall. $F1 = 2(Precision * Recall)/Precision + Recall)$
FAF↓	(Frame-based) No. of false alarms per frame
GT	No. of ground truth trajectories
MT↑	Mostly tracked: Percentage of GT trajectories which are covered by tracker output for more than 80% in length
PT↓	Partially tracked: Percentage of GT trajectories which are covered by tracker output for less than 80% in length and more than 20%
Frag↓	Fragments: The total of No. of times that a ground truth trajectory is interrupted in tracking result
IDS↓	ID switches: The total of No. of times that a tracked trajectory changes its matched GT identity
MOTA↑	The Multiple Object Tracking Accuracy takes into account false positives, missed targets and identity switches
MOTP↑	The Multiple Object Tracking Precision is simply the average distance between true and estimated targets

Table 5: Evaluation metrics for multi-face tracking. The up arrows indicate higher scores are better and vice versa.

Music Video Dataset												
Video	Duration(sec)	Frames	Main casts	Number of faces	Resolution							
T-ara	152	4,547	6	12,595	1280x720							
Pussycat Dolls	198	5,937	6	17,515	1280x720							
Bruno Mars	270	6,483	11	14,837	1280x720							
Hello Bubble	220	5,275	4	4,731	1280x720							
Darling	157	3,769	8	11,522	1280x720							
Apink	197	4,729	6	6,294	1280x720							
Westlife	229	5,736	4	27,306	1280x720							
Girls Aloud	221	5,531	5	22,798	854x480							

Table 6:	Statistics	of datasets.

Body-worn Camera Dataset										
Video	Duration(sec)	Frames	Main casts	Number of faces	Resolution					
Foot Chase	762	12,076	5	5207	640x480					
TS1	128	1,807	2	631	640x480					
TS3	35	1,027	3	200	640x480					
DVHD2	266	7,981	3	1137	1280x720					

3.3. Quantitative Multi-face Tracking Results

We report the face tracking results on each music video in Table 7 and 8. Our method is compared with ADMM[1], IHTLS[3] and variants in [7]. Table 9 presents the face tracking results of our method and 4 variants in [7] on body-worn camera videos.

4. Qualitative Evaluation

Figures 5-16 show sample tracking results generated by our method in the Music Video and Body-worn Camera datasets.

Method	Recall [↑]	Precision	rtF1↑	FAF.	.GTI	MT1	PT.	IDS	Frag	MOTA [↑]	MOTP↑
ADMM[1]	58.0	68.3	62.8	0.86	6	0	6	251	641	29.4	63.8
IHTLS[3]	58.0	73.2	64.7	0.68	6	0	6	218	632	35.3	63.8
Pre-Trained[7]	60.9	95.9	74.5	0.10	6	0	6	143	232	57.3	72.4
mTLD[7]	62.1	93.5	74.6	0.14	6	0	6	251	241	56.0	72.6
Siamese[7]	62.1	95.5	75.3	0.09	6	0	6	106	213	58.4	72.5
Triplet[7]	63.5	94.2	75.9	0.12	6	0	6	94	233	59.0	72.5
SymTriplet[7]	62.8	95.4	75.7	0.10	6	0	6	75	235	59.2	72.4
Ours	59.8	96.9	74.0	0.07	6	0	6	95	190	57.5	86.7
			PUSS	усат							
Method	Recall [†]	Precision	1000	FAF	GT	MT1	, •PT	IDS	Frag	MOTA1	
	89.3	74.2	81.0	0.58	6	4	2	287	$\frac{1105}{412}$	63.2	63.5
IHTLS[3]	89.5	78.6	83.7	0.42	6	4	2	248	413	70.3	63.5
Pre-Trained[7]	76.4	88.0	81.8	0.3	6	2	4	128	405	65.1	64.9
mTLD[7]	79.7	89.5	84.3	0.22	6	2	4	296	444	68.3	64.9
Siamese[7]	81.2	88.9	84.9	0.24	6	2	4	107	430	70.3	64.9
Triplet[7]	81.4	88.3	84.7	0.26	6	2	4	99	435	69.9	64.9
SymTriplet[7]	81.6	88.2	84.8	0.26	6	2	4	82	439	70.2	64.9
Ours	78.8	85.1	81.8	0.42	6	2	4	66	194	60.7	75.4
			BRI		мат	25					
Method	Recall [↑]	Precision	rF1↑	FAF	GT	MT1	PT	IDS	Frag	MOTA1	
ADMM[1]	68 9	76.0	72.3	0.40	11	3	8	428	503	50.6	85.7
IHTLS[3]	68.5	83.5	75.2	0.35	11	3	8	375	491	52.7	85.8
Pre-Trained[7]	53.7	92.3	67.9	0.10	11	0	9	151	453	48.3	88.0
mTLD[7]	58.0	94.0	71.7	0.10	11	2	9	278	551	52.6	87.9
Siamese[7]	62.3	92.8	74.6	0.12	11	2	8	126	540	56.7	87.8
Triplet[7]	62.4	92.6	74.6	0.13	11	2	9	126	543	56.6	87.8
SymTriplet[7]	62.9	91.9	74.7	0.14	11	2	9	105	551	56.8	87.8
Ours	84.7	85.7	85.1	0.48	11	8	3	220	501	65.8	82.0
			HEL	IOR	IIBB	нЕ					
Method	Recallt	Precision		FAF	GT		DT	IDS	Frag	МОТА4	MOTP
	66 1	80.2	72.5	0.22	4	0	4	115	101	47.6	60.0
	65.9	84.8	74.5	0.25	4	0	4	100	190	52.0	69.9
Pre-Trained[7]	47.1	83.8	60.3	0.10	4	0	4	71	187	36.6	68.5
rie franca[/]	Ŧ/.I	0.5.0	75.1	0.17		0	7	120	255	50.0	70.5
mTLD[7]	67.4	84.8	1/51	017	4		4	1 19	111	1/12	/// ٦

76.5 0.15 4 **0**

76.5 0.15 4 **0 4** 69

89.2 80.5 0.17 4 **0** 4 **51** 148

4 82

56.2

56.5

60.9

256

256

70.5

70.5

84.8

Triplet[7] SymTriplet[7]

Ours

68.6

68.6

73.3

86.4

86.5

Table 7: Quantitative comparison with the state-of-the-art methods on music video dataset. The best results are highlighted with the bold.

Table 8: Quantitative comparison with the state-of-the-art methods on music video dataset. The	best results are highlighted
with the bold.	

			D	OARLI	NG						
Method I	Recall↑	Precision	†F1↑	FAF↓	GT	MT	ŀPT↓	.IDS↓	Frag↓	MOTA↑	<u>MOTP</u> ↑
ADMM[1]	88.3	74.0	80.6	0.62	8	7	1	412	342	53.0	88.4
IHTLS[3]	88.5	80.2	84.2	0.44	8	7	1	381	338	62.7	88.4
Pre-Trained[7]	53.1	85.2	65.4	0.20	8	2	6	115	233	42.7	88.5
mTLD[7]	79.9	82.3	81.1	0.35	8	4	4	278	461	59.8	89.3
Siamese[7]	85.2	86.3	85.7	0.27	8	7	1	214	310	69.5	88.9
Triplet[7]	85.9	85.3	85.6	0.30	8	7	1	187	317	69.2	88.9
SymTriplet[7]	86.7	85.7	86.2	0.29	8	7	1	169	323	70.5	88.9
Ours	89.6	92.5	91.0	0.14	8	7	1	98	211	82.3	88.9
				APIN	K						
Method I	Recall↑	Precision	†F1↑	FAF↓	GT	MT	PT↓	IDS↓	Frag↓	MOTA↑	MOTP↑
ADMM[1]	81.2	92.8	86.6	0.09	6	4	2	179	158	72.4	76.1
IHTLS[3]	81.2	95.4	87.7	0.05	6	4	2	173	157	74.9	76.1
Pre-Trained[7]	56.4	98.3	71.7	0.01	6	0	6	100	170	54.0	75.5
mTLD[7]	81.5	98.0	89.0	0.02	6	3	3	173	240	77.4	76.3
Siamese[7]	81.6	98.9	89.4	0.01	6	3	3	124	238	79.0	76.3
Triplet[7]	82.1	98.5	89.6	0.02	6	4	2	140	244	78.9	76.3
SymTriplet[7]	82.4	98.3	89.7	0.02	6	4	2	78	246	80.0	76.3
Ours	90.3	93.4	91.8	0.10	6	6	0	36	131	82.7	94.3
			W	/ESTI	JFF	3					
Method I	Recall	Precision	^F1↑	FAF.	GT	- MT1	PT.	IDS.	Frag.	MOTA↑	MOTP↑
ADMM[1]	89.1	36.0	51.3	0.60	4	4	0	223	184	62.4	87.5
IHTLS[3]	89.4	39.9	55.2	0.65	4	4	Õ	113	177	60.9	87.5
Pre-Trained[7]	77.8	79.5	78.6	0.40	4	1	3	85	128	57.0	88.2
mTLD[7]	86.0	76.5	81.0	0.52	4	3	1	177	169	58.1	88.1
Siamese[7]	86.8	79.7	83.1	0.44	4	3	1	74	142	64.1	88.0
Triplet[7]	86.8	80.1	83.3	0.43	4	3	1	89	140	64.5	88.0
SymTriplet[7]	85.6	83.9	84.7	0.33	4	3	1	57	136	68.6	88.1
Ours	91.2	85.7	88.4	0.35	4	4	0	16	109	73.2	89.1
			GIR	RLSAI	OI	ID					
Method I	Recall	Precision	↑F1↑	FAF	GT	MT ¹	PT	IDS	Frag	MOTA↑	MOTP↑
ADMM[1]	70.0	50.3	58.5	0.61	5	1	4	487	528	46.6	87.1
IHTLS[3]	69.8	60.2	64.7	0.46	5	1	4	396	482	51.8	87.2
Pre-Trained[7]	49.3	89.6	63.6	0.20	5	0	5	138	332	42.7	87.7
mTLD[7]	54.3	90.5	67.9	0.17	5	0	5	322	425	46.7	88.2
Siamese[7]	58.1	90.8	70.9	0.17	5	1	4	112	376	51.6	87.8
Triplet[7]	57.2	92.0	70.5	0.15	5	1	4	80	367	51.7	87.8
SymTriplet[7]	58.2	90.3	70.8	0.19	5	1	4	64	377	51.6	87.8
Ours	86.0	93.1	89.4	0.42	5	5	0	42	161	71.5	87.3

	Foot Chase									
Method	Rec.↑	Prec.↑	$F1\uparrow FAF\downarrow$	GT	MT	ÈPT↓	IDS↓	Frag↓	MOTA↑	MOTP↑
mTLD[7]	71.5	84.5	77.5 0.09	5	2	3	51	272	50.9	93.2
Pre-Trained[7]	71.5	84.5	77.5 0.09	5	2	3	43	271	51.0	93.2
Siamese[7]	71.4	84.5	77.4 0.09	5	2	3	38	275	51.1	93.2
SymTriplet[7]	71.4	84.9	77.6 0.09	5	2	3	32	271	51.6	93.2
Ours	76.6	95.7	85.1 0.01	5	5	0	30	155	73.2	94.3
			TSI							
Method	Recall	Precision	†F1†FAF↓	GT	MT	ÈPT↓	IDS↓	Frag↓	MOTA↑	MOTP↑
mTLD[7]	87.3	43.2	57.8 0.34	2	1	1	7	18	67.0	95.9
Pre-Trained[7]	87.3	43.2	57.8 0.34	2	1	1	7	18	67.0	95.9
Siamese[7]	87.3	43.2	57.8 0.34	2	1	1	6	18	67.1	96.0
SymTriplet[7]	87.3	43.2	57.8 0.34	2	1	1	4	18	67.5	95.9
Ours	81.5	86.2	83.8 0.22	2	1	1	4	8	68.5	94.0
			TSE	3						
Method	Recall	Precision	↑F1↑FAF↓	GT	MT	ÈPT↓	IDS↓	Frag↓	MOTA↑	MOTP↑
mTLD[7]	88.5	35.1	50.3 0.32	3	2	1	2	32	55.9	81.7
Pre-Trained[7]	88.0	34.6	49.7 0.34	3	2	1	2	34	52.0	81.8
Siamese[7]	88.5	36.0	51.2 0.29	3	2	1	2	28	58.4	81.6
SymTriplet[7]	88.5	35.0	50.2 0.34	3	2	1	2	33	53.1	81.8
Ours	95.0	80.9	87.4 0.30	3	3	0	1	9	64.5	75.3
			DVH	D2						
Method	Recall	Precision	↑F1↑FAF↓	GT	MΤ	PT↓	IDS↓	Frag↓	MOTA↑	MOTP↑
mTLD[7]	82.4	82.9	82.6 0.21	3	2	1	10	78	52.5	95.6
Pre-Trained[7]	82.9	82.7	82.8 0.20	3	2	1	9	81	54.0	95.3
Siamese[7]	82.9	82.6	82.7 0.21	3	2	1	8	83	52.7	95.3
SymTriplet[7]	82.8	84.7	83.7 0.18	3	2	1	11	68	57.2	95.3
Ours	83.5	91.6	87.4 0.20	3	2	1	4	16	55.8	93.6

Table 9: Quantitative comparisons with the state-of-the-art method [7] on body-worn camera dataset.

Figure 5: Sample tracking results of the proposed algorithm on T-ara music video. The ID number and color of face bounding box for each person are kept.

Figure 6: Sample tracking results of the proposed algorithm on Pussycat Dolls music video. The ID number and color of face bounding box for each person are kept.

Figure 7: Sample tracking results of the proposed algorithm on BrunoMars music video. The ID number and color of face bounding box for each person are kept.

Figure 8: Sample tracking results of the proposed algorithm on HelloBubble music video. The ID number and color of face bounding box for each person are kept.

Figure 9: Sample tracking results of the proposed algorithm on Darling music video. The ID number and color of face bounding box for each person are kept.

Figure 10: Sample tracking results of the proposed algorithm on Apink music video. The ID number and color of face bounding box for each person are kept.

Figure 11: Sample tracking results of the proposed algorithm on Westlife music video. The ID number and color of face bounding box for each person are kept.

Figure 12: Sample tracking results of the proposed algorithm on GirlsAloud music video. The ID number and color of face bounding box for each person are kept.

Figure 13: Sample tracking results of the proposed algorithm on Foot Chase video. Sample tracking results of the proposed algorithm

Figure 14: Sample tracking results of the proposed algorithm on TS1 video. Sample tracking results of the proposed algorithm

Figure 15: Sample tracking results of the proposed algorithm on Traffic Stop 3 video. Sample tracking results of the proposed algorithm

Figure 16: Sample tracking results of the proposed algorithm on Domestic Violence HD2 music video. Sample tracking results of the proposed algorithm

References

- M. Ayazoglu, M. Sznaier, and O. I. Camps. Fast algorithms for structured robust principal component analysis. In *Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on*, pages 1704–1711. IEEE, 2012. 3, 4, 5
- [2] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. Lof: identifying density-based local outliers. In ACM sigmod record, volume 29, pages 93–104. ACM, 2000.
- [3] C. Dicle, O. I. Camps, and M. Sznaier. The way they move: Tracking multiple targets with similar appearance. In *Proceedings of the IEEE International Conference on Computer Vision*, pages 2304–2311, 2013. 3, 4, 5
- [4] T. Hastie, R. I. Tibshirani, et al. The elements of statistical learning: data mining, inference, and prediction/by trevor hastie, robert tibshirani, jerome frieman. Technical report, 2009.
- [5] G. James, D. Witten, and T. Hastie. An introduction to statistical learning: With applications in r., 2014.
- [6] A. Milan, K. Schindler, and S. Roth. Challenges of ground truth evaluation of multi-target tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pages 735–742, 2013. 2
- [7] S. Zhang, Y. Gong, J.-B. Huang, J. Lim, J. Wang, N. Ahuja, and M.-H. Yang. Tracking persons-of-interest via adaptive discriminative features. In *European Conference on Computer Vision*, pages 415–433. Springer, 2016. 2, 3, 4, 5, 6