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In this supplementary material, we show some important derivations and numerical examples supporting the
paper Analytical Modeling of Vanishing Points and Curves in Catadioptric Cameras.

A. Appendix for the computation of vanishing points for a given directions Secs. 2.1 and 2.2

In this appendix we show the coefficients of the polynomial equations used to compute the coordinates of the
vanishing point in the mirror, i.e. κ39ry, zs and κ410ry, zs:

a1 “8s3c2 (1)

a2 “4s3A
2 ´ 4s3A (2)

a3 “4ABs3 ´ 8As2c2 ` 8As3c3 (3)

a4 “B
2s3 ´ 4Cs3 ´ 4Bs2c2 ` 4Bs3c3 (4)

a5 “´ 4s2A
2 ` 4s2A (5)

a6 “4Bs2 ´ 8ABs2 ´ 4As2c3 ` 4As3c2 ´ 4A2s2c3 ´ 4A2s3c2 (6)

a7 “8ACs2 ´ 3B2s2 ´ 4Cs2 ´ 4Bs2c3 ` 4Bs3c2 ´ 4ABs2c3 ´ 4ABs3c2 (7)

a8 “4BCs2 ` 4Cs2c3 ´ 4Cs3c2 ´B
2s2c3 ´B

2s3c2, (8)

and

b1 “s
2
1p2A´ 2q2 ` p2s2 ´ 2As2q

2 (9)

b2 “2pB ` 2c3qp2A´ 2qs21 ´ 2p2s2 ´ 2As2qpBs2 ` 2s2c3 ´ 2s3c2q (10)

b3 “pBs2 ` 2s2c3 ´ 2s3c2q
2 ` s21pB ` 2c3q

2 (11)

b4 “´ 4As21c2p2A´ 2q (12)

b5 “´ s
2
1p2Bc2p2A´ 2q ` 4Ac2pB ` 2c3qq (13)

b6 “´ 2Bs21c2pB ` 2c3q (14)

b7 “Ap2s2 ´ 2As2q
2 (15)

b8 “Bp2s2 ´ 2As2q
2 ´ 2Ap2s2 ´ 2As2qpBs2 ` 2s2c3 ´ 2s3c2q (16)

b9 “ApBs2 ` 2s2c3 ´ 2s3c2q
2 ´ Cp2s2 ´ 2As2q

2 ` 4A2s21c
2
2 ´ 2Bp2s2 ´ 2As2qpBs2 ` 2s2c3 ´ 2s3c2q

(17)

b10 “BpBs2 ` 2s2c3 ´ 2s3c2q
2 ` 2Cp2s2 ´ 2As2qpBs2 ` 2s2c3 ´ 2s3c2q ` 4ABs21c

2
2 (18)

b11 “B
2s21c

2
2 ´ CpBs2 ` 2s2c3 ´ 2s3c2q

2. (19)

The coefficients of the polynomial equations shown above were derived for the general case. When consid-
ering specific cases, these coefficients are simplified significantly and, in many cases, they are eliminated. As a
consequence, in many cases, the degree of polynomial equations are reduced. Results for general axial, axial with
a spherical mirror, axial with an ellipsoid mirror, axial with conical mirror, and axial with cylindrical mirror are
shown below.

A.1. Axial Case

In the axial case, the camera movement has to be restricted to motion in the uz axis, therefore, c2 “ 0. The
general equations become:

κ39 ry, zs “ a1yz
2 ` a2yz ` a3y ` a4z

3 ` a5z
2 ` a6z ` a7, (20)

with:
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a1 “4s3A
2 ´ 4s3A (21)

a2 “4ABs3 ` 8As3c3 (22)

a3 “s3B
2 ` 4s3c3B ´ 4Cs3 (23)

a4 “´ 4s2A
2 ` 4s2A (24)

a5 “4Bs2 ´ 8ABs2 ´ 4As2c3 ´ 4A2s2c3 (25)

a6 “48ACs2 ´ 3B2s2 ´ 4Cs2 ´ 4Bs2c3 ´ 4ABs2c3
(26)

a7 “s2c3B
2 ` 4Cs2B ` 4Cs2c3, (27)

and:
κ410 ry, zs “ b1y

2z2 ` b2y
2z ` b3y

2 ` b4z
4 ` b5z

3 ` b6z
2 ` b7z ` b8, (28)

with:

b1 “s
2
1p2A´ 2q2 ` p2s2 ´ 2As2q

2 (29)

b2 “2pB ` 2c3qp2A´ 2qs21 ´ 2p2s2 ´ 2As2qpBs2 ` 2s2c3q (30)

b3 “s
2
1pB ` 2c3q

2 ` pBs2 ` 2s2c3q
2 (31)

b4 “Ap2s2 ´ 2As2q
2 (32)

b5 “Bp2s2 ´ 2As2q
2 ´ 2Ap2s2 ´ 2As2qpBs2 ` 2s2c3q (33)

b6 “ApBs2 ` 2s2c3q
2 ´ Cp2s2 ´ 2As2q

2 ´ 2Bp2s2 ´ 2As2qpBs2 ` 2s2c3q (34)

b7 “BpBs2 ` 2s2c3q
2 ` 2Cp2s2 ´ 2As2qpBs2 ` 2s2c3q (35)

b8 “´ CpBs2 ` 2s2c3q
2. (36)

(37)

A.2. Spherical mirror (A “ 1, B “ 0)

Constraints for the spherical mirror are:

κ29 ry, zs “ a1yz ` a2y ` a3z
2 ` a4z ` a5, (38)

with:

a1 “8s3c3 (39)

a2 “´ 4Cs3 (40)

a3 “´ 8s2c3 (41)

a4 “4Cs2 (42)

a5 “4Cs2c3, (43)

and:
κ210 ry, zs “ b1y

2 ` b2z
2 ` b3 (44)

with:

b1 “ 4s21c
2
3 ` 4s22c

2
3 (45) b2 “ 4s22c

2
3 (46) b3 “ ´4Cs22c

2
3. (47)

A.3. Ellipsoid mirror (A “ 0, C “ 0)

Constraints for the ellipsoid mirror are:

κ29 ry, zs “ a1y ` a2z
2 ` a3z ` a4, (48)

with:
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a1 “s3B
2 ` 4s3c3B (49)

a2 “4Bs2 (50)

a3 “´ 3s2B
2 ´ 4s2c3B (51)

a4 “´B
2s2c3, (52)

and:
κ410 ry, zs “ b1y

2z2 ` b2y
2z ` b3y

2 ` b4z
3 ` b5z

2 ` b6z, (53)

with:

b1 “4s21 ` 4s22 (54)

b2 “p´4B ´ 8c3qs
2
1 ´ 4s2pBs2 ` 2s2c3q (55)

b3 “s
2
1pB ` 2c3q

2 ` pBs2 ` 2s2c3q
2 (56)

b4 “4Bs22 (57)

b5 “´ 4Bs2pBs2 ` 2s2c3q (58)

b6 “BpBs2 ` 2s2c3q
2. (59)

A.4. Conical mirror (B “ 0, C “ 0)

Constraints for the conical mirror are:

κ39 ry, zs “ a1yz
2 ` a2yz ` a3z

3 ` a4z
2, (60)

with:

a1 “4s3A
2 ´ 4s3A (61)

a2 “8As3c3 (62)

a3 “´ 4s2A
2 ` 4s2A (63)

a4 “´ 4s2c3A
2 ´ 4s2c3A, (64)

and:
κ410 ry, zs “ b1y

2z2 ` b2y
2z ` b3y

2 ` b4z
4 ` b5z

3 ` b6z
2, (65)

with:

b1 “s
2
1p2A´ 2q2 ` p2s2 ´ 2As2q

2 (66)

b2 “4c3p2A´ 2qs21 ´ 4s2c3p2s2 ´ 2As2q (67)

b3 “4s21c
2
3 ` 4s22c

2
3 (68)

b4 “Ap2s2 ´ 2As2q
2 (69)

b5 “´ 4As2c3p2s2 ´ 2As2q (70)

b6 “4As22c
2
3. (71)

A.5. Cylindrical mirror (A “ 0, B “ 0)

Constraints for the cylindrical mirror are:

κ19 ry, zs “ a1y ` a2z ` a3, (72)

with:

a1 “´ 4Cs3 (73) a2 “´ 4Cs2 (74) a3 “4Cs2c3, (75)

and:
κ410 ry, zs “ b1y

2z2 ` b2y
2z ` b3y

2 ` b4z
2 ` b5z ` b6, (76)

with:
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b1 “4s21 ` 4s22 (77)

b2 “´ 8c3s
2
1 ´ 8c3s

2
2 (78)

b3 “4s21c
2
3 ` 4s22c

2
3 (79)

b4 “´ 4Cs22 (80)

b5 “8Cs22c3 (81)

b6 “´ 4Cs22c
2
3. (82)

A.6. Compute Vanishing Points

Following the derivations described in Sec. 2.2 (Computing Vanishing Points from a Given Direction), to com-
pute vanishing points, we end up with a 10th degree polynomial (in the general case), as defined below:

κ1016 rzs “c1z
10 ` c2z

9 ` c3z
8 ` c4z

7 ` c5z
6 ` c6z

5 ` c7z
4 ` c8z

3 ` c9z
2 ` c10z

1 ` c11, (83)

where:

c1 “pb7a
2
2b1 ` a

2
5b

2
1q{a

2
1 (84)

c2 “pb8a
2
2b1 ` b2b7a

2
2 ´ b4a2a5b1 ` 2a3b7a2b1 ` 2b2a

2
5b1 ` 2a6a5b

2
1 ´ 2a1b7a5b1q{a

2
1 (85)

c3 “pa
2
1b

2
7 ´ b4a1a2b7 ´ 2b8a1a5b1 ´ 2a1a5b2b7 ´ 2a1a6b1b7 ` b9a

2
2b1 ` b8a

2
2b2 ` b3a

2
2b7`

` 2b8a2a3b1 ` 2a2a3b2b7 ´ b5a2a5b1 ´ b4a2a5b2 ´ b4a2a6b1 ` 2a4a2b1b7 ` a
2
3b1b7 ´ b4a3a5b1`

` 2b3a
2
5b1 ` a

2
5b

2
2 ` 4a5a6b1b2 ` 2a7a5b

2
1 ` a

2
6b

2
1q{a

2
1 (86)

c4 “p2b7b8a
2
1 ´ b8a1a2b4 ´ b5b7a1a2 ´ b7a1a3b4 ´ 2b9a1a5b1 ´ 2b8a1a5b2 ` a1a5b

2
4 ´ 2b3b7a1a5´

´ 2b8a1a6b1 ´ 2b7a1a6b2 ´ 2a7b7a1b1 ` b10a
2
2b1 ` b9a

2
2b2 ` b3b8a

2
2 ` 2b9a2a3b1 ` 2b8a2a3b2`

` 2b3b7a2a3 ´ b6a2a5b1 ´ b5a2a5b2 ´ b3a2a5b4 ´ b5a2a6b1 ´ a2a6b2b4 ´ a7a2b1b4 ` 2a4b8a2b1`

` 2a4b7a2b2 ` b8a
2
3b1 ` b7a

2
3b2 ´ b5a3a5b1 ´ a3a5b2b4 ´ a3a6b1b4 ` 2a4b7a3b1 ` 2b3a

2
5b2`

` 4b3a5a6b1 ` 2a5a6b
2
2 ` 2a8a5b

2
1 ` 4a7a5b1b2 ´ a4a5b1b4 ` 2a26b1b2 ` 2a7a6b

2
1q{a

2
1 (87)

c5 “´ p´a
2
1b

2
8 ´ 2b7b9a

2
1 ` b9a1a2b4 ` b5a1a2b8 ` b6b7a1a2 ` a1a3b4b8 ` b5b7a1a3 ` b7a1a4b4`

` 2b10a1a5b1 ` 2b9a1a5b2 ` 2a1a5b3b8 ´ 2b5a1a5b4 ` 2b9a1a6b1 ` 2a1a6b2b8 ` 2b7a1a6b3 ´ a1a6b
2
4`

` 2a1a7b1b8 ` 2b7a1a7b2 ` 2a8b7a1b1 ´ b11a
2
2b1 ´ b10a

2
2b2 ´ b9a

2
2b3 ´ 2b10a2a3b1 ´ 2b9a2a3b2´

´ 2a2a3b3b8 ´ 2b9a2a4b1 ´ 2a2a4b2b8 ´ 2b7a2a4b3 ` b6a2a5b2 ` b5a2a5b3 ` b6a2a6b1 ` b5a2a6b2`

` a2a6b3b4 ` b5a2a7b1 ` a2a7b2b4 ` a8a2b1b4 ´ b9a
2
3b1 ´ a

2
3b2b8 ´ b7a

2
3b3 ´ 2a3a4b1b8´

´ 2b7a3a4b2 ` b6a3a5b1 ` b5a3a5b2 ` a3a5b3b4 ` b5a3a6b1 ` a3a6b2b4 ` a3a7b1b4 ´ b7a
2
4b1`

` b5a4a5b1 ` a4a5b2b4 ` a4a6b1b4 ´ a
2
5b

2
3 ´ 4a5a6b2b3 ´ 4a5a7b1b3 ´ 2a5a7b

2
2 ´ 4a8a5b1b2´

´ 2a26b1b3 ´ a
2
6b

2
2 ´ 4a6a7b1b2 ´ 2a8a6b

2
1 ´ a

2
7b

2
1q{a

2
1 (88)

c6 “´ pa2a5b3b6 ´ a1a7b
2
4 ´ 2a5a6b

2
3 ´ 2a5a8b

2
2 ´ 2a6a7b

2
2 ´ 2a7a8b

2
1 ´ 2a27b1b2 ´ 2a26b2b3 ´ a

2
4b1b8´

´ a24b2b7 ´ a
2
3b1b10 ´ a

2
3b2b9 ´ a

2
3b3b8 ´ a

2
2b2b11 ´ a

2
2b3b10 ´ 2a21b7b10 ´ 2a21b8b9 ´ 2a1a5b4b6´

´ 2a1a6b4b5 ´ a1a5b
2
5 ` a2a6b2b6 ` a2a6b3b5 ` a2a7b1b6 ` a2a7b2b5 ` a2a7b3b4 ` a2a8b1b5`

` a2a8b2b4 ` a3a5b2b6 ` a3a5b3b5 ` a3a6b1b6 ` a3a6b2b5 ` a3a6b3b4 ` a3a7b1b5 ` a3a7b2b4`

` a3a8b1b4 ` a4a5b1b6 ` a4a5b2b5 ` a4a5b3b4 ` a4a6b1b5 ` a4a6b2b4 ` a4a7b1b4 ` a1a2b4b10`

` a1a2b5b9 ` a1a2b6b8 ` a1a3b4b9 ` a1a3b5b8 ` a1a3b6b7 ` a1a4b4b8 ` a1a4b5b7 ´ 2a2a3b1b11´

´ 2a2a3b2b10 ´ 2a2a3b3b9 ´ 2a2a4b1b10 ´ 2a2a4b2b9 ´ 2a2a4b3b8 ´ 2a3a4b1b9 ´ 2a3a4b2b8´

´ 2a3a4b3b7 ´ 4a5a7b2b3 ´ 4a5a8b1b3 ´ 4a6a7b1b3 ´ 4a6a8b1b2 ` 2a1a5b1b11 ` 2a1a5b2b10`

` 2a1a5b3b9 ` 2a1a6b1b10 ` 2a1a6b2b9 ` 2a1a6b3b8 ` 2a1a7b1b9 ` 2a1a7b2b8 ` 2a1a7b3b7`

` 2a1a8b1b8 ` 2a1a8b2b7q{a
2
1 (89)
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c7 “´ pa2a6b3b6 ´ a
2
7b

2
2 ´ a

2
8b

2
1 ´ a

2
1b

2
9 ´ a1a6b

2
5 ´ a1a8b

2
4 ´ 2a5a7b

2
3 ´ 2a6a8b

2
2 ´ 2a27b1b3 ´ a

2
4b1b9´

´ a24b2b8 ´ a
2
4b3b7 ´ a

2
3b1b11 ´ a

2
3b2b10 ´ a

2
3b3b9 ´ a

2
2b3b11 ´ 2a21b7b11 ´ 2a21b8b10 ´ 2a1a5b5b6´

´ 2a1a6b4b6 ´ 2a1a7b4b5 ´ a
2
6b

2
3 ` a2a7b2b6 ` a2a7b3b5 ` a2a8b1b6 ` a2a8b2b5 ` a2a8b3b4`

` a3a5b3b6 ` a3a6b2b6 ` a3a6b3b5 ` a3a7b1b6 ` a3a7b2b5 ` a3a7b3b4 ` a3a8b1b5 ` a3a8b2b4`

` a4a5b2b6 ` a4a5b3b5 ` a4a6b1b6 ` a4a6b2b5 ` a4a6b3b4 ` a4a7b1b5 ` a4a7b2b4 ` a4a8b1b4`

` a1a2b4b11 ` a1a2b5b10 ` a1a2b6b9 ` a1a3b4b10 ` a1a3b5b9 ` a1a3b6b8 ` a1a4b4b9 ` a1a4b5b8`

` a1a4b6b7 ´ 2a2a3b2b11 ´ 2a2a3b3b10 ´ 2a2a4b1b11 ´ 2a2a4b2b10 ´ 2a2a4b3b9 ´ 2a3a4b1b10´

´ 2a3a4b2b9 ´ 2a3a4b3b8 ´ 4a5a8b2b3 ´ 4a6a7b2b3 ´ 4a6a8b1b3 ´ 4a7a8b1b2 ` 2a1a5b2b11`

` 2a1a5b3b10 ` 2a1a6b1b11 ` 2a1a6b2b10 ` 2a1a6b3b9 ` 2a1a7b1b10 ` 2a1a7b2b9 ` 2a1a7b3b8`

` 2a1a8b1b9 ` 2a1a8b2b8 ` 2a1a8b3b7q{a
2
1 (90)

c8 “´ pa2a7b3b6 ´ a1a7b
2
5 ´ 2a5a8b

2
3 ´ 2a6a7b

2
3 ´ 2a7a8b

2
2 ´ 2a28b1b2 ´ 2a27b2b3 ´ a

2
4b1b10´

´ a24b2b9 ´ a
2
4b3b8 ´ a

2
3b2b11 ´ a

2
3b3b10 ´ 2a21b8b11 ´ 2a21b9b10 ´ 2a1a6b5b6 ´ 2a1a7b4b6´

´ 2a1a8b4b5 ´ a1a5b
2
6 ` a2a8b2b6 ` a2a8b3b5 ` a3a6b3b6 ` a3a7b2b6 ` a3a7b3b5 ` a3a8b1b6`

` a3a8b2b5 ` a3a8b3b4 ` a4a5b3b6 ` a4a6b2b6 ` a4a6b3b5 ` a4a7b1b6 ` a4a7b2b5 ` a4a7b3b4`

` a4a8b1b5 ` a4a8b2b4 ` a1a2b5b11 ` a1a2b6b10 ` a1a3b4b11 ` a1a3b5b10 ` a1a3b6b9`

` a1a4b4b10 ` a1a4b5b9 ` a1a4b6b8 ´ 2a2a3b3b11 ´ 2a2a4b2b11 ´ 2a2a4b3b10 ´ 2a3a4b1b11´

´ 2a3a4b2b10 ´ 2a3a4b3b9 ´ 4a6a8b2b3 ´ 4a7a8b1b3 ` 2a1a5b3b11 ` 2a1a6b2b11 ` 2a1a6b3b10`

` 2a1a7b1b11 ` 2a1a7b2b10 ` 2a1a7b3b9 ` 2a1a8b1b10 ` 2a1a8b2b9 ` 2a1a8b3b8q{a
2
1 (91)

c9 “´ p´a
2
1b

2
10 ´ 2b9b11a

2
1 ` b11a1a3b5 ` a1a3b6b10 ` a1a4b5b10 ` b9a1a4b6 ` b4b11a1a4 ` 2b11a1a7b2`

` 2a1a7b3b10 ´ 2a1a7b5b6 ` 2a1a8b2b10 ` 2b9a1a8b3 ´ a1a8b
2
5 ´ 2b4a1a8b6 ` 2b1b11a1a8`

` 2a6b11a1b3 ´ a6a1b
2
6 ` a2b11a1b6 ´ b11a

2
3b3 ´ 2b11a3a4b2 ´ 2a3a4b3b10 ` a3a7b3b6 ` a3a8b2b6`

` a3a8b3b5 ´ a
2
4b2b10 ´ b9a

2
4b3 ´ b1b11a

2
4 ` a4a7b2b6 ` a4a7b3b5 ` a4a8b2b5 ` b4a4a8b3`

` b1a4a8b6 ` a6a4b3b6 ´ 2a2b11a4b3 ´ a
2
7b

2
3 ´ 4a7a8b2b3 ´ a

2
8b

2
2 ´ 2b1a

2
8b3 ´ 2a6a8b

2
3`

` a2a8b3b6q{a
2
1 (92)

c10 “´ p´2b10b11a
2
1 ` b10a1a4b6 ` b5b11a1a4 ` 2b10a1a8b3 ´ 2b5a1a8b6 ` 2b2b11a1a8`

` 2a7b11a1b3 ´ a7a1b
2
6 ` a3b11a1b6 ´ b10a

2
4b3 ´ b2b11a

2
4 ` b5a4a8b3 ` b2a4a8b6 ` a7a4b3b6´

´ 2a3b11a4b3 ´ 2b2a
2
8b3 ´ 2a7a8b

2
3 ` a3a8b3b6q{a

2
1 (93)

c11 “pa
2
1b

2
11 ´ a1a4b6b11 ´ 2a1a8b3b11 ` a1a8b

2
6 ` a

2
4b3b11 ´ a4a8b3b6 ` a

2
8b

2
3q{a

2
1 (94)

This is a 10th degree polynomial in z that can be solved by computing its real roots. Afterwards, we can
back-substitute this value of z into the equations as specified in Sec. 2.2, and get the respective coordinates of the
vanishing point on the mirror.

B. Appendix for the computation of direction for a given vanishing points

This section includes some useful information for the derivation of the proposed solution to compute directions,
from a given vanishing points.

B.1. Coefficients of the polynomial equations Sec. 2.3

In this section we present the coefficients of the polynomial equations κ117rs2, s3s and κ218rs1, s2, s3s:
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κ117 rs1, s2s “ a1s1 ` a2s2, (95)

where

a1 “ 4Cc3 ´ 4Cz1 ´B
2c3 ` 4Az31 ` 4Bz21 ´ 3B2z1 ´ 4A2z31 ` 4BC

´ 4A2c3z
2
1 ` 8ACz1 ´ 4Bc2y1 ´ 4Bc3z1 ´ 8ABz21 ´ 4Ac3z

2
1 ´ 8Ac2y1z1 ´ 4ABc3z1; (96)

a2 “ 4A2y1z
2
1 ´ 4c2A

2z21 ` 4ABy1z1 ´ 4c2ABz1 ´ 4Ay1z
2
1`

` 8c3Ay1z1 ` 4c2Az
2
1 `B

2y1 ´ c2B
2 ``4c3By1 ` 4c2Bz1 ` 8c2y

2
1 ´ 4Cy1 ´ 4Cc2, (97)

and:
κ218 rs1, s2, s3s “ b1s

2
1 ` b2s

2
2 ` b3s2s3 ` b4s

2
3 (98)

with:

b1 “pBc2 ´By1 ´ 2c3y1 ` 2y1z1 ` 2Ac2z1 ´ 2Ay1z1q
2 (99)

b2 “py
2
1 ` z

2
1 ´ 1qpB ` 2c3 ´ 2z1 ` 2Az1q

2 (100)

b3 “´ 4c2py
2
1 ` z

2
1 ´ 1qpB ` 2c3 ´ 2z1 ` 2Az1q (101)

b4 “4c22py
2
1 ` z

2
1 ´ 1q (102)

B.2. Numerical Example

Figure B.1: Image of a hyperbolic catadiop-
tric camera, with several parallel lines, and
their respective vanishing points.

Although it was not mentioned in the paper, we ran some
numerical examples, to validate the proposed techniques. For
that purpose, let us consider the example of a mirror defined by
A “ ´0.15, B “ ´0.30 and C “ ´0.03 (hyperbolic), and
two chessboard in the planes z “ 2 and y “ ´2 as shown
in Fig. B.1, in which c2 “ ´0.5 and c3 “ ´0.8. By ob-
serving the infinity line, we can pin-point a vanishing point
at ru, vs “ r748.1, 650.0s (in red). Using the techniques de-
scribed in previous section, we will determine the direction that
generated this vanishing point.

By backward projecting the point into the mirror, we dis-
cover its coordinates as being v “ rx, y, zs P Ω “

r´0.0670,´0.0463, 0.1155s. We then substitute it in equations
(96) to (102) to obtain:

a1 “0.1003 (103)

a2 “0 (104)

b1 “0.0045 (105)

b2 “´ 0.0211 (106)

b3 “0.0195 (107)

b4 “´ 0.0045. (108)

By substituting in (25) of the main article, we obtain:

s2 “0 , (109)
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and:

s3 “´ 0.7071 (110)

s1 “˘ 0.7071 . (111)

Hence, we discover that the 3D straight line in the world that generated the vanishing point v had the direc-
tion s “ r´0.7071, 0,´0.7071s by considering the underlying camera system (we can ignore the solution
s1 “ r´0.7071, 0, 0.7071s).

The other points shown in Fig. B.1, have the correspondent directions:

Red points: s “ r´0.7071, 0,´0.7071s

Yellow points: s “ r´0.7071, 0.7071, 0s

Cyan points: s “ r0.7071, 0.7071, 0s .

(112)

C. Appendix for computations related to Vanishing Curves

In this section we present some details regarding the results obtained for the parameterization of the vanishing
curves.

C.1. Computing a Curve at the Infinity

In this subsection, we present the full derivation of γprq as presented in Sec. 3 (Curves at the Infinity). Consider
the equation defined in Sec. 2.1 (planar constraint):

κ11ry, zsx` κ
2
3ry, zs “ 0 (113)

We start by using s as defined in Eq. 28 of the main article in (113), and obtain a new equation:

κ222ry, z, αsx` κ
3
23ry, z, αs “ 0 (114)

In addition, by replacing s as shown in Eq. 28 of the main article in κ9ry, zs, we obtain:

κ324 ry, z, αs “ 0. (115)

Since (115) is linear on α, one can use this constraint to define α as:

α “
κ325ry,zs

κ326ry,zs
. (116)

To conclude the definition of the curve at the infinity, we replace α, as derived in the previous equation, in (114),
resulting in:

Γprq :“ κ220ry, zsx` κ
3
21ry, zs “ 0 (117)

where the coefficients of κ220ry, zs and κ221ry, zs are defined in Appendix. C.2. As already presented in the main
paper (Sec. 3), the curves in the infinity are projected onto the mirror as follows:

γprq :“
 

r “ rx, y, zs P R3 : Γprq ^ Ωprq “ 0
(

. (118)

To be able to define a curve in the mirror, we solve Γprq for x and replace the result in Ωprq, defining:

κ627ry, zs “ 0, (119)

obtaining a different (though equally valid) definition of the curve as:

γprq “
 

rx, y, zs P R3 : κ627ry, zs “ 0^ x2 “ ´y2 ´Az2 ´Bz ` C
(

. (120)
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Table 1: Degrees of the polynomial equation that can be used to compute lines at the infinity, for specific catadiop-
tric camera systems. We use D denotes the degree of the polynomial equation, and N the number of coefficients.
The * in the table implies that one needs to consider a possibility of z “ 0.

Mirror Type D N

General 6 22
General Axial (c2 “ 0) 6 18

Spherical Axial (A “ 1, B “ 0) 4 12
Ellipsoid Axial (A “ 0, C “ 0) 4 9
Conical Axial (B “ 0, C “ 0) 4* 9

Cylindrical Axial (A “ 0, B “ 0) 2 6

The reason why we could want this alternative definition would be to simplify the process of calculating the
actual points that belong to the curve. The coefficient of the general expression for κ627ry, zs are presented in
Appendix C.8.

Similarly to what happens in the estimation of the vanishing points, the complexity of the polynomial equation
κ627ry, zs can be significantly reduced when considering specific camera configurations. In Tab. 1, we present a
table with the variation of the degree of the polynomial equation κ627ry, zs for some specific cases.

C.2. Coefficients Curves at the Infinity

In this subsection we show the coefficients for the parameterization of Γprq (namely polynomial equations
κ220ry, zs and κ321ry, zs), that can define the curve at the infinity. We define:

κ220ry, zs “ a1y ` a2z
2 ` a3z ` a4 (121)

where:
a1 “8c2ps1,2s2,3 ´ s2,2s1,3q

a2 “´ ps1,2s2,3 ´ s2,2s1,3qp´4A2 ` 4Aq

a3 “p8Ac3 ` 4ABqps1,2s2,3 ´ s2,2s1,3q

a4 “ps1,2s2,3 ´ s2,2s1,3qpB
2 ` 4c3B ´ 4Cq,

(122)

and:
κ321ry, zs “ b1y

2 ` b2yz
2 ` b3yz ` b4y ` b5z

3 ` b6z
2 ` b7z ` b8 (123)

where:

b1 “8s2,1s1,3c2 ´ 8s1,1s2,3c2 (124)

b2 “4As1,1s2,3 ´ 4As2,1s1,3 ´ 4A2s1,1s2,3 ` 4A2s2,1s1,3 (125)

b3 “4ABs2,1s1,3 ´ 4ABs1,1s2,3 ` 8As1,1s2,2c2 ´ 8As2,1s1,2c2 ´ 8As1,1s2,3c3 ` 8As2,1s1,3c3 (126)

b4 “4Cs1,1s2,3 ´ 4Cs2,1s1,3 ´B
2s1,1s2,3 `B

2s2,1s1,3 ` 4Bs1,1s2,2c2 ´ 4Bs2,1s1,2c2´

´ 4Bs1,1s2,3c3 ` 4Bs2,1s1,3c3 (127)

b5 “4As2,1s1,2 ´ 4As1,1s2,2 ` 4A2s1,1s2,2 ´ 4A2s2,1s1,2 (128)
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b6 “4Bs2,1s1,2 ´ 4Bs1,1s2,2 ` 4A2s1,1s2,3c2 ´ 4A2s2,1s1,3c2 ` 4A2s1,1s2,2c3 ´ 4A2s2,1s1,2c3`

` 8ABs1,1s2,2 ´ 8ABs2,1s1,2 ´ 4As1,1s2,3c2 ` 4As2,1s1,3c2 ` 4As1,1s2,2c3 ´ 4As2,1s1,2c3 (129)

b7 “4Cs1,1s2,2 ´ 4Cs2,1s1,2 ` 3B2s1,1s2,2 ´ 3B2s2,1s1,2 ´ 8ACs1,1s2,2 ` 8ACs2,1s1,2´

´ 4Bs1,1s2,3c2 ` 4Bs2,1s1,3c2 ` 4Bs1,1s2,2c3 ´ 4Bs2,1s1,2c3 ` 4ABs1,1s2,3c2´

´ 4ABs2,1s1,3c2 ` 4ABs1,1s2,2c3 ´ 4ABs2,1s1,2c3 (130)

b8 “B
2s1,1s2,3c2 ´B

2s2,1s1,3c2 `B
2s1,1s2,2c3 ´B

2s2,1s1,2c3 ´ 4BCs1,1s2,2 ` 4BCs2,1s1,2`

` 4Cs1,1s2,3c2 ´ 4Cs2,1s1,3c2 ´ 4Cs1,1s2,2c3 ` 4Cs2,1s1,2c3. (131)

Specific cases for specific types of camera position and type of mirror are shown in Appendix. C.3 to C.7.

C.3. Coefficients of curves at the infinity: Axial case

In the axial case, the camera movement has to be restricted to motion in the uz axis, therefore, c2 “ 0:

κ220 ry, zs “ ps1,2s2,3 ´ s2,2s1,3qpa1z
2 ` a2z ` a3q, (132)

with:

a1 “4A2 ´ 4A (133) a2 “8Ac3 ` 4AB (134) a3 “B
2 ` 4c3B ´ 4C, (135)

and:
κ321 ry, zs “ b1yz

2 ` b2yz ` b3y ` b4z
3 ` b5z

2 ` b6z ` b7, (136)

with:

b1 “4As1,1s2,3 ´ 4As2,1s1,3 ´ 4A2s1,1s2,3 ` 4A2s2,1s1,3 (137)

b2 “4ABs2,1s1,3 ´ 4ABs1,1s2,3 ´ 8As1,1s2,3c3 ` 8As2,1s1,3c3 (138)

b3 “4Cs1,1s2,3 ´ 4Cs2,1s1,3 ´B
2s1,1s2,3 `B

2s2,1s1,3 ´ 4Bs1,1s2,3c3 ` 4Bs2,1s1,3c3 (139)

b4 “4As2,1s1,2 ´ 4As1,1s2,2 ` 4A2s1,1s2,2 ´ 4A2s2,1s1,2 (140)

b5 “4Bs2,1s1,2 ´ 4Bs1,1s2,2 ` 4A2s1,1s2,2c3 ´ 4A2s2,1s1,2c3 ` 8ABs1,1s2,2 ´ 8ABs2,1s1,2`

` 4As1,1s2,2c3 ´ 4As2,1s1,2c3 (141)

b6 “4Cs1,1s2,2 ´ 4Cs2,1s1,2 ` 3B2s1,1s2,2 ´ 3B2s2,1s1,2 ´ 8ACs1,1s2,2 ` 8ACs2,1s1,2`

` 4Bs1,1s2,2c3 ´ 4Bs2,1s1,2c3 ` 4ABs1,1s2,2c3 ´ 4ABs2,1s1,2c3 (142)

b7 “B
2s1,1s2,2c3 ´B

2s2,1s1,2c3 ´ 4BCs1,1s2,2 ` 4BCs2,1s1,2 ´ 4Cs1,1s2,2c3 ` 4Cs2,1s1,2c3. (143)

C.4. Coefficients of curves at the infinity: Spherical mirror (A “ 1, B “ 0)

Constraints for the spherical mirror are:

κ120 ry, zs “ ps1,2s2,3 ´ s2,2s1,3qpa1z ` a2q, (144)

with:

a1 “8c3 (145) a2 “´ 4C, (146)

and:
κ221 ry, zs “ b1yz ` b2y ` b3z

2 ` b4z ` b5, (147)

with:
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b1 “8s2,1s1,3c3 ´ 8s1,1s2,3c3 (148)

b2 “4Cs1,1s2,3 ´ 4Cs2,1s1,3 (149)

b3 “8s1,1s2,2c3 ´ 8s2,1s1,2c3 (150)

b4 “4Cs2,1s1,2 ´ 4Cs1,1s2,2 (151)

b5 “4Cs2,1s1,2c3 ´ 4Cs1,1s2,2c3. (152)

C.5. Coefficients of curves at the infinity: Ellipsoid mirror (A “ 0, C “ 0)

Constraints for the Ellipsoidal mirror are:

κ020 ry, zs “ ps1,2s2,3 ´ s2,2s1,3qa1, (153)

with:
a1 “B

2 ` 4c3B, (154)

and:
κ221 ry, zs “ b1y ` b2z

2 ` b3z ` b4, (155)

with:

b1 “B
2s2,1s1,3 ´B

2s1,1s2,3 ´ 4Bs1,1s2,3c3 ` 4Bs2,1s1,3c3 (156)

b2 “4Bs2,1s1,2 ´ 4Bs1,1s2,2 (157)

b3 “3B2s1,1s2,2 ´ 3B2s2,1s1,2 ` 4Bs1,1s2,2c3 ´ 4Bs2,1s1,2c3 (158)

b4 “B
2s1,1s2,2c3 ´B

2s2,1s1,2c3. (159)

C.6. Coefficients of curves at the infinity: Conical mirror (B “ 0, C “ 0)

Constraints for the conical mirror are:

κ220 ry, zs “ ps1,2s2,3 ´ s2,2s1,3qpa1z
2 ` a2zq, (160)

with:

a1 “4A2 ´ 4A (161) a2 “8Ac3, (162)

and:
κ321 ry, zs “ b1yz

2 ` b2yz ` b3z
3 ` b4z

2, (163)

with:

b1 “4As1,1s2,3 ´ 4As2,1s1,3 ´ 4A2s1,1s2,3 ` 4A2s2,1s1,3 (164)

b2 “8As2,1s1,3c3 ´ 8As1,1s2,3c3 (165)

b3 “4As2,1s1,2 ´ 4As1,1s2,2 ` 4A2s1,1s2,2 ´ 4A2s2,1s1,2 (166)

b4 “4A2s1,1s2,2c3 ´ 4A2s2,1s1,2c3 ` 4As1,1s2,2c3 ´ 4As2,1s1,2c3. (167)

C.7. Coefficients of curves at the infinity: Cylindrical mirror (A “ 0, B “ 0)

Constraints for the cylindrical mirror are:

κ020 ry, zs “ ps1,2s2,3 ´ s2,2s1,3qa1, (168)

with:
a1 “´ 4C, (169)

and:
κ121 ry, zs “ b1y ` b2z ` b3 (170)

with:
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b1 “4Cs1,1s2,3 ´ 4Cs2,1s1,3 (171)

b2 “4Cs1,1s2,2 ´ 4Cs2,1s1,2 (172)

b3 “4Cs2,1s1,2c3 ´ 4Cs1,1s2,2c3. (173)

C.8. Solving Curves at the Infinity

In the general case, from Sec. C.1, we obtain the following expression for κ627ry, zs:

κ627ry, zs “a1y
4 ` a2y

3z2 ` a3y
3z ` a4y

3 ` a5y
2z4 ` a6y

2z3 ` a7y
2z2 ` a8y

2z ` a9y
2 ` a10yz

5`

` a11yz
4 ` a12yz

3 ` a13yz
2 ` a14yz ` a15y ` a16z

6 ` a17z
5 ` a18z

4 ` a19z
3 ` a20z

2`

` a21z ` a22

(174)

where:

a1 “64n21n
2
3c

2
2 ` 64n22n

2
3c

2
2 (175)

a2 “´ 16n2n3c2p´4n2n3A
2 ` 4n2n3Aq ´ 16n21n

2
3c2p´4A2 ` 4Aq (176)

a3 “16n2n3c2p8An
2
3c2 ` 4ABn2n3 ` 8An2n3c3q ` 16n21n

2
3c2p8Ac3 ` 4ABq (177)

a4 “16n21n
2
3c2pB

2 ` 4c3B ´ 4Cq ` 16n2n3c2pn2B
2n3 ` 4c2Bn

2
3 ` 4n2c3Bn3 ´ 4Cn2n3q (178)

a5 “p´4n2n3A
2 ` 4n2n3Aq

2 ` n21n
2
3p´4A2 ` 4Aq2 (179)

a6 “´ 2p´4n2n3A
2 ` 4n2n3Aqp8An

2
3c2 ` 4ABn2n3 ` 8An2n3c3q ´ 16n2n3c2p´4A2n23 ` 4An23q`

´ 2n21n
2
3p8Ac3 ` 4ABqp´4A2 ` 4Aq (180)

a7 “p8An
2
3c2 ` 4ABn2n3 ` 8An2n3c3q

2 ´ 2p´4n2n3A
2 ` 4n2n3Aqpn2B

2n3 ` 4c2Bn
2
3 ` 4n2c3Bn3`

´ 4Cn2n3q ´ n
2
1n

2
3p2p´4A2 ` 4AqpB2 ` 4c3B ´ 4Cq ´ p8Ac3 ` 4ABq2q ` 64An21n

2
3c

2
2`

` 16n2n3c2p4A
2n23c3 ´ 4Bn23 ` 8ABn23 ` 4An23c3 ´ 4A2n2n3c2 ` 4An2n3c2q (181)

a8 “2p8An23c2 ` 4ABn2n3 ` 8An2n3c3qpn2B
2n3 ` 4c2Bn

2
3 ` 4n2c3Bn3 ´ 4Cn2n3q ` 2n21n

2
3p8Ac3`

` 4ABqpB2 ` 4c3B ´ 4Cq ` 64Bn21n
2
3c

2
2 ` 16n2n3c2p4Cn

2
3 ` 3B2n23 ´ 8ACn23 ` 4Bn23c3`

` 4ABn23c3 ` 4Bn2n3c2 ´ 4ABn2n3c2q (182)

a9 “pn2B
2n3 ` 4c2Bn

2
3 ` 4n2c3Bn3 ´ 4Cn2n3q

2 ` n21n
2
3pB

2 ` 4c3B ´ 4Cq2 ´ 64Cn21n
2
3c

2
2`

´ 16n2n3c2p´c3B
2n23 ` n2c2B

2n3 ` 4CBn23 ` 4Cc3n
2
3 ` 4Cn2c2n3q (183)

a10 “2p´4A2n23 ` 4An23qp´4n2n3A
2 ` 4n2n3Aq (184)

a11 “´ 2p´4A2n23 ` 4An23qp8An
2
3c2 ` 4ABn2n3 ` 8An2n3c3q ´ 2p´4n2n3A

2 ` 4n2n3Aqp4A
2n23c3`

´ 4Bn23 ` 8ABn23 ` 4An23c3 ´ 4A2n2n3c2 ` 4An2n3c2q ´ 16An21n
2
3c2p´4A2 ` 4Aq (185)

a12 “2p8An23c2 ` 4ABn2n3 ` 8An2n3c3qp4A
2n23c3 ´ 4Bn23 ` 8ABn23 ` 4An23c3 ´ 4A2n2n3c2`

` 4An2n3c2q ´ 2p´4n2n3A
2 ` 4n2n3Aqp4Cn

2
3 ` 3B2n23 ´ 8ACn23 ` 4Bn23c3 ` 4ABn23c3`

` 4Bn2n3c2 ´ 4ABn2n3c2q ´ 2p´4A2n23 ` 4An23qpn2B
2n3 ` 4c2Bn

2
3 ` 4n2c3Bn3`

´ 4Cn2n3q ´ 16Bn21n
2
3c2p´4A2 ` 4Aq ` 16An21n

2
3c2p8Ac3 ` 4ABq (186)
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a13 “2p´4n2n3A
2 ` 4n2n3Aqp´c3B

2n23 ` n2c2B
2n3 ` 4CBn23 ` 4Cc3n

2
3 ` 4Cn2c2n3q ` 2p8An23c2`

` 4ABn2n3 ` 8An2n3c3qp4Cn
2
3 ` 3B2n23 ´ 8ACn23 ` 4Bn23c3 ` 4ABn23c3 ` 4Bn2n3c2`

´ 4ABn2n3c2q ` 2pn2B
2n3 ` 4c2Bn

2
3 ` 4n2c3Bn3 ´ 4Cn2n3qp4A

2n23c3 ´ 4Bn23 ` 8ABn23`

` 4An23c3 ´ 4A2n2n3c2 ` 4An2n3c2q ` 16An21n
2
3c2pB

2 ` 4c3B ´ 4Cq ` 16Cn21n
2
3c2p´4A2 ` 4Aq`

` 16Bn21n
2
3c2p8Ac3 ` 4ABq (187)

a14 “2pn2B
2n3 ` 4c2Bn

2
3 ` 4n2c3Bn3 ´ 4Cn2n3qp4Cn

2
3 ` 3B2n23 ´ 8ACn23 ` 4Bn23c3 ` 4ABn23c3`

` 4Bn2n3c2 ´ 4ABn2n3c2q ´ 2p8An23c2 ` 4ABn2n3 ` 8An2n3c3qp´c3B
2n23 ` n2c2B

2n3`

` 4CBn23 ` 4Cc3n
2
3 ` 4Cn2c2n3q ` 16Bn21n

2
3c2pB

2 ``4c3B ´ 4Cq ´ 16Cn21n
2
3c2p8Ac3 ` 4ABq

(188)

a15 “´ 2pn2B
2n3 ` 4c2Bn

2
3 ` 4n2c3Bn3 ´ 4Cn2n3qp´c3B

2n23 ` n2c2B
2n3 ` 4CBn23`

` 4Cc3n
2
3 ` 4Cn2c2n3q ´ 16Cn21n

2
3c2pB

2 ` 4c3B ´ 4Cq (189)

a16 “p´4A2n23 ` 4An23q
2 `An21n

2
3p´4A2 ` 4Aq2 (190)

a17 “Bn
2
1n

2
3p´4A2 ` 4Aq2 ´ 2p´4A2n23 ` 4An23qp4A

2n23c3 ´ 4Bn23 ` 8ABn23 ` 4An23c3`

´ 4A2n2n3c2 ` 4An2n3c2q ´ 2An21n
2
3p8Ac3 ` 4ABqp´4A2 ` 4Aq (191)

a18 “p4A
2n23c3 ´ 4Bn23 ` 8ABn23 ` 4An23c3 ´ 4A2n2n3c2 ` 4An2n3c2q

2 ´ 2p´4A2n23`

` 4An23qp4Cn
2
3 ` 3B2n23 ´ 8ACn23 ` 4Bn23c3 ` 4ABn23c3 ` 4Bn2n3c2 ´ 4ABn2n3c2q`

´ Cn21n
2
3p´4A2 ` 4Aq2 ´An21n

2
3p2p´4A2 ` 4AqpB2 ` 4c3B ´ 4Cq ´ p8Ac3 ` 4ABq2q`

´ 2Bn21n
2
3p8Ac3 ` 4ABqp´4A2 ` 4Aq (192)

a19 “2p´4A2n23 ` 4An23qp´c3B
2n23 ` n2c2B

2n3 ` 4CBn23 ` 4Cc3n
2
3 ` 4Cn2c2n3q`

` 2p4A2n23c3 ´ 4Bn23 ` 8ABn23 ` 4An23c3 ´ 4A2n2n3c2 ` 4An2n3c2qp4Cn
2
3 ` 3B2n23 ´ 8ACn23`

` 4Bn23c3 ` 4ABn23c3 ` 4Bn2n3c2 ´ 4ABn2n3c2q ´Bn
2
1n

2
3p2p´4A2 ` 4AqpB2 ` 4c3B ´ 4Cq`

´ p8Ac3 ` 4ABq2q ` 2An21n
2
3p8Ac3 ` 4ABqpB2 ` 4c3B ´ 4Cq ` 2Cn21n

2
3p8Ac3`

` 4ABqp´4A2 ` 4Aq (193)

a20 “p4Cn
2
3 ` 3B2n23 ´ 8ACn23 ` 4Bn23c3 ` 4ABn23c3 ` 4Bn2n3c2 ´ 4ABn2n3c2q

2`

´ 2p´c3B
2n23 ` n2c2B

2n3 ` 4CBn23 ` 4Cc3n
2
3 ` 4Cn2c2n3qp4A

2n23c3 ´ 4Bn23 ` 8ABn23`

` 4An23c3 ´ 4A2n2n3c2 ` 4An2n3c2q `An
2
1n

2
3pB

2 ` 4c3B ´ 4Cq2 ` Cn21n
2
3p2p´4A2`

` 4AqpB2 ` 4c3B ´ 4Cq ´ p8Ac3 ` 4ABq2q ` 2Bn21n
2
3p8Ac3 ` 4ABqpB2 ` 4c3B ´ 4Cq (194)

a21 “Bn
2
1n

2
3pB

2 ` 4c3B ´ 4Cq2 ´ 2p´c3B
2n23 ` n2c2B

2n3 ` 4CBn23 ` 4Cc3n
2
3 ` 4Cn2c2n3qp4Cn

2
3`

` 3B2n23 ´ 8ACn23 ` 4Bn23c3 ` 4ABn23c3 ` 4Bn2n3c2 ´ 4ABn2n3c2q ´ 2Cn21n
2
3p8Ac3`

` 4ABqpB2 ` 4c3B ´ 4Cq (195)

a22 “p´c3B
2n23 ` n2c2B

2n3 ` 4CBn23 ` 4Cc3n
2
3 ` 4Cn2c2n3q

2 ´ Cn21n
2
3pB

2 ` 4c3B ´ 4Cq2 (196)

To conclude, we can obtain all the points in curve at the infinity by traversing either y or z in the range desired
and obtaining the other from κ627ry, zs “ 0. Afterwards, we can get the x for each individual point by using the
fact that the point must be on the mirror surface (Ωprq “ 0).
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D. Vanishing Points in Central Unified Spherical Model

In this section we propose a simpler solution to the analytical modeling of vanishing points in central cata-
dioptric camera systems. For that purpose, we considering the central unified model proposed in [2, 1]. Next,
we present the projection of 3D straight lines using the sphere model and present a solution to the modeling of
vanishing points.

D.1. Line Projection

Wen considering the central unified sphere model, 3D lines are projected into the sphere, by considering that
the line is on a plane that constrains the line and the origin of the catadioptric system. Let us denote this plane as:

Π “
“

l1 l2 l3 0
‰T
, (197)

This line is then projected onto the sphere in a circle (intersection between the plane Π and the unit sphere),
which is the projected into the conic C in the canonical image plane1, using the implicit relation:

»

–

x
y
1

fi

fl

T »

–

l21p1´ ξ
2q ´ l23ξ

2 l1l2p1´ ξ
2q l1l3

l1l2p1´ ξ
2q l22p1´ ξ

2q ´ l23ξ
2 l2l3

l1l2 l2l3 l23

fi

fl

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

C

»

–

x
y
1

fi

fl “ 0 ñ

e1x
2 ` e2xy ` e3x` e4y

2 ` e5y ` e6 “ 0 (198)

for some coefficients ei (for i “ 1, . . . 6) and unknowns x and y.

D.2. Modeling Vanishing Points using the Central Unified Model

Now that we have defined the projection of the curves into the canonical image plane, the estimation of the
vanishing points is given by the intersection points of the projection of two parallel 3D lines into the canonical
image plane. By knowing two parallel lines, we have two 2-degree polynomial equations as shown in (198):

e1x
2 ` e2xy ` e3x` e4y

2 ` e5y ` e6 “ 0, (199)

f1x
2 ` f2xy ` f3x` f4y

2 ` f5y ` f6 “ 0. (200)

Then, the intersection of these two polynomial equations (which represents the intersection of two quadratic
curves) can be estimated by solving one of the functions in terms of x (lets say (199)) and substituting the re-
sult in the second. After some simplifications, we get:

x “
e3 ` e2y ˘

a

e22y
2 ` 2e2e3y ` e23 ´ 4e1e4y2 ´ 4e1e5y ´ 4e1e6

´2e1
, and (201)

g1y
4 ` g2y

3 ` g3y
2 ` g4y ` g5 “ 0. (202)

which can be solved by estimating the roots of the four degree (202) and back substituting the resulting y in (201).

E. Numerical Example of the Absolute Pose Estimation using Minimal Data

1Notice that this is an intermediate projection, it does not represent directly the image pixels.
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Figure E.2: Image of a spherical catadioptric
camera, with two parallel lines, their respec-
tive vanishing points, and some points from
each line marked in yellow.

Although it was not mention in the paper, we illustrate the
procedure used to estimate the camera pose (Sec. 4.2), by
considering a numerical example. For this purpose, we con-
sider the minimal data case, i.e. consider two know direc-
tions in the world coordinate system: qd1 “ r0, 1, 0s, qd2 “

r0.7071, 0.7071, 0s and qd3 “ qd1 ˆ qd2 “ r0, 0, 1s, and the im-
age shown in Fig. E.2. By using the correspondent vanishing
points, we can determine d1, d2 and d3 to be:

d1 “r´0.7071, 0.7071, 0s (203)

d2 “r0, 1, 0s (204)

d3 “d1 ˆ d2 “ r0, 0,´0.7071s , (205)

and obtain:

R “

»

—

–

0.7071 ´0.7071 0

0.7071 0.7071 0

0 0 1

fi

ffi

fl

, (206)

using the Procrustes problem.
Since we now know the rotation matrix R, we can use

it to estimate the translation parameters as explained also in Sec. 4.2. Considering that the two lines in
Fig. E.2 are represented in the 3D world by ql1 “ pqs1, qm1q “ p0, 1, 0, 1, 0, 0q and ql2 “ pqs2, qm2q “

p0.7071, 0.7071, 0, 0.7071,´0.7071, 2.8284q, we can obtain a linear system of three equations (using the three
yellow points in Fig. E.2, j “ 1, 2, 3), as shown in Sec. 4.2. Then, one can estimate the translation parameters as:

A “

»

–

´0.6587 ´0.6587 0.1965
´0.5306 ´0.5306 0.1299
´0.6676 0 ´0.7087

fi

fl ,b “

»

–

´0.1965
´0.1299
0.7087

fi

fl . (207)

and:
t “ A:b “

“

0 0 ´1
‰T
. (208)

Both estimated values of rotation and translation parameters correspond to the ones introduced in this simulated
environment.

References
[1] J. P. Barreto and H. Araujo. Issues on the geometry of central catadioptric image formation. In IEEE Computer Vision

and Pattern Recognition (CVPR), volume 2, pages 422–427, 2001.
[2] C. Geyer and K. Daniilidis. A unifying theory for central panoramic systems and practical implications. In European

Conf. Computer Vision (ECCV), pages 445–461, 2000.

15


