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In this supplementary material, we show some important derivations and numerical examples supporting the
paper Analytical Modeling of Vanishing Points and Curves in Catadioptric Cameras.

A. Appendix for the computation of vanishing points for a given directions Secs. 2.1 and 2.2

In this appendix we show the coefficients of the polynomial equations used to compute the coordinates of the
vanishing point in the mirror, i.e. x3[y, z] and k1,[y, 2]:

a1 =8s3co (1
as =4s3A% — 453 A 2)
a3 =4ABs3 — 8Asocy + 8As3cs 3)
as =B?s3 — 4C's3 — 4Bsaco + 4Bsses 4)
as = — 459 A% + 459 A (5)
ag =4Bsy — 8ABsy — 4Asocs + 4Ass3cy — 4A%s9c3 — 4A% 5509 (6)
a7 =8AC'sy — 3B%sy — 4C'sy — 4Bsocs + 4Bsscy — 4ABsocs — 4ABsscy (7
ag =4BC'sy + 4Cs9c3 — 4Cs3¢y — B?s9c3 — B?s3ca, (8)
and

by =52(24 — 2)? + (259 — 2As9)? )
by =2(B + 2¢3)(24 — 2)s? — 2(255 — 2A59)(Bsy + 2s9c3 — 253¢2) (10)
by =(Bsg + 2823 — 253¢2)% + 52(B + 2¢3)? (11)
by = — 4As3cy(24 — 2) (12)
bs = — 52(2Bcy(24 — 2) + 4Acy(B + 2¢3)) (13)
bg = — 2Bs2ca(B + 2¢3) (14)
by =A(2s9 — 2A55)? (15)
bg =B(2sy — 2As5)? — 2A(255 — 2As5)(Bsy + 2s9¢3 — 253¢2) (16)

by =A(Bsy + 2s9c3 — 253¢2)? — C(257 — 2As9)% + 4A%s3c5 — 2B(2s7 — 2As2)(Bsa + 2s2¢3 — 253¢3)
(17)
bio =B(Bsy + 2s9c3 — 28302)2 +2C (289 — 2As9)(Bsg + 2s9c3 — 283¢2) + 4ABS%C% (18)
b1y szs%cg — C(Bsg + 2s9c3 — 28362)2. (19)

The coefficients of the polynomial equations shown above were derived for the general case. When consid-
ering specific cases, these coefficients are simplified significantly and, in many cases, they are eliminated. As a
consequence, in many cases, the degree of polynomial equations are reduced. Results for general axial, axial with
a spherical mirror, axial with an ellipsoid mirror, axial with conical mirror, and axial with cylindrical mirror are
shown below.

A.l. Axial Case

In the axial case, the camera movement has to be restricted to motion in the u, axis, therefore, co = 0. The
general equations become:

HS [y, z] = a1yz® + asyz + asy + asz® + a5z + agz + ar, (20)

with:



a; =4s3A% — 4s3A (21) a5 =4Bsy — 8ABsy — 4Asocy — 4A4%s5¢5 (25)

ay =4ABss + 8As3cs (22) ag =48 ACsy — 3B%sy — 4C sy — 4Bsycs — 4ABsocs
as =s3B? + 4s3c3B — 4C's3 (23) (26)
ay = — 459A% + 4s9 A (24) a7 =s3c3B? 4+ 4Cs9B + 4C'sycs, (27)
and:
Iizllo [y, 2] = b1y®2? + bay®z + bsy® + baz? + bs2® + bg2® + brz + bg, (28)
with:
by =s2(2A — 2)? + (255 — 2As5)? (29)
by =2(B + 2¢3)(24 — 2)s? — 2(259 — 2A59)(Bsy + 2s9¢3) (30)
by =s2(B + 2¢3)? + (Bsgy + 2s2¢3)? (31)
by =A(255 — 2A55)? (32)
bs =B(2sy — 2As9)? — 2A(255 — 2As5)(Bsy + 2s3¢3) (33)
be =A(Bsg + 2s9c3)* — C(259 — 2As2)? — 2B(2s3 — 2As2)(Bsg + 2s9¢3) (34)
by =B(Bsy + 2s9¢3)* + 2C(2s3 — 2As2)(Bsa + 2s9c3) (35)
bg = — C(Bsg + 2s2¢3)%. (36)
(37

A.2. Spherical mirror (A = 1, B = 0)

Constraints for the spherical mirror are:

ﬁg ly, z] = a1yz + agy + asz?® + asz + as, (38)

with:
aj 288303 (39) az = — 88263 (41) as 2408203, (43)

as = —4C's3 (40) ay =4C's9 42)

and:
K30 [y, 2] = biy® + ba2® + bs (44)

with:
by = 4s3c3 +4s3c2  (45) by = 4s3¢3 (46) by = —4Cs3c3.  (47)

A.3. Ellipsoid mirror (4 = 0,C = 0)

Constraints for the ellipsoid mirror are:
/-f% ly,z] = a1y + asz® + asz + au, (48)

with:



a1 =s3B% + 4s3c3B (49) az = — 3s9B? — 4s9¢3B (51)

az =4Bs; (50) as = — B?sycs, (52)

and:
/ﬁlo ly, z] = b1y222 + bgy2z + b3y2 + by2 + b5z2 + bgz, (53)

with:
by =457 + 4s3 (54) by =4Bs3 (57)
by =(—4B — 8c3)st — 4s9(Bsy + 2s9c3)  (55) bs = — 4Bso(Bsg + 2s9¢3) (58)
b3 =s3(B + 2c3)% + (Bsa + 2s2c3)? (56) b =B(Bsy + 2s9¢3)°. (59)

A.4. Conical mirror (B =0, C = 0)

Constraints for the conical mirror are:

/@g ly,z] = a1yz® + asyz + agz® + aqz’, (60)

with:
a1 =4s3A% — 4s3A (61) az = — 459 A% + 459 A (63)
a2 :8A83C3 (62) a4 = — 48263A2 — 48263A, (64)

and:
/{%0 [y, z] = b1y2z2 + b2y22 + b3y2 + bazt 4+ b2 + b622, (65)

with:
by =52(24 — 2)? + (259 — 2As9)? (66) by =A(2s9 — 2A55)? (69)
by =4c3(2A — 2)s% — 4sgcy(250 — 2As9)  (67) bs = — 4Asyc3(2s2 — 2As2) (70)
by =4s3¢3 + 4s3c3 (68) be =4As3c3. (71)

A.5. Cylindrical mirror (A = 0, B = 0)

Constraints for the cylindrical mirror are:

"'419 [y, 2] = a1y + a2z + as, (72)

with:
a = — 4083 (73) ag = — 4082 (74) as 2408203, (75)

and:
/i‘llo ly, z] = bly222 + bngZ + b3y2 + byz? + bsz + bg, (76)

with:



by =452 + 453 (77) by = — 4C's3 (80)
by = — 8c3s? — 8353 (78) bs =8C's3¢3 (81)
b3 =48%C§ + 45%0% (79) b = — 405%6%. (82)

A.6. Compute Vanishing Points

Following the derivations described in Sec. 2.2 (Computing Vanishing Points from a Given Direction), to com-
pute vanishing points, we end up with a 10" degree polynomial (in the general case), as defined below:

R%g (2] =120 + 927 + 328 + 2" + 528 + c62° + cr2? + 2% + 2% + 102! + 1, (83)
where:
c1 =(b7a§b1 + agb%)/a% (84)
Cc2 :(bga%bl + bgb7a% — byasasbi + 2asbrashy + 2b2a§b1 + 2a6a5b% — 2alb7a5b1)/a% (85)

C3 Z(G%bg — bgaragby — 2bgaiasby — 2a1a5bobr — 2a1a6b1b7 + bga%bl + bgagbz + b3a%b7+

+ 2bgasagby + 2asaszbaby — bsasasby — bgasasby — byasaghbt + 2a4a2b1b7 + a§b1b7 — byaszasb; +
+ 2b3a§b1 + a§b§ + 4asagbi1by + 2a7a5b% + a%b%)/a% (86)

Cq4 2(2()71)8@% — b8a1a2b4 — b5b7a1a2 — b7a1a3b4 — 2b9a1a5b1 — 2b8a1a5b2 + a1a5bi — 263b7a1a5—

Cy =

Ce =

— 2bgajaghy — 2brajaghs — 2a7braiby + biga3by + boa3by + bsbgal + 2bgasasby + 2bgasazbs+

+ 2bgbrasas — bgasasby — bsasasby — bzasasby — bsasagby — asagbaby — azasbiby + 2a4bgasb +

+ 2agbragbs + bgazby + braiby — bsazasby — agasbaby — azagbibs + 2asbrazby + 2b3azbs+

+ 4bsasagbt + 2a5aﬁb% + 2a8a5b% + 4darasbibs — agasbrby + 2a§b1b2 + 2a7a6b%)/a% (87)
— (—a%bg — 2b7b9a% + bgayaghy + bsaiasbs + bgbraias + ajazbibs + bsbraias + brajasbs+

+ 2bjpaiasbi + 2bgaiasbs + 2a1a5b3bs — 2bsaiasbs + 2bgaiagb + 2a1agbabs + 2b7a1agbs — alaﬁbi—f-
+ 2ay1a7b1bg + 2brajarby + 2agbraiby — bijadby — bigasbs — boadbs — 2bipazaszby — 2bgazazbs—

— 2asa3bzbg — 2bgasasby — 2asa4bsbg — 2b7asagsbs + bgasasbs + bsasasbs + bgasaghi + bsasagbe+

+ agagbaby + bsagarby + agarbaby + agagbiby — boaiby — aZbabs — braibs — 2azasbibg—

— 2bragagbs + bgaszasby + bsasasbs + azasbsby + bsazagby + agzagboby + azarbiby — b7aib1+

+ bsagasbi + agasboby + agagbiby — a%bg — 4asagbobs — 4asarbibg — 2a5a7b§ — 4agasb1bo—

— 2a2b1b3 — a2b3 — dagarbiby — 2agaght — a2bl) /a3 (88)
— (agasbsbg — a1a7bi — 2a5a6b§ — 2a5a8b% — 2a6a7b% — 2a7a8b% — 2a$b1b2 — 2a§b2b3 — aiblbg—

— a3boby — a3bibig — a3baby — a3bzbg — a3babiy — adbsbig — 2a3brbig — 2a3bgby — 2a1a5bsbs—

— 2aiagbsbs — a1a5b§ + agagbabg + asagbsbs + agarbibg + asarbabs + asarbsby + asagbibs+

+ agagbaby + azasbabg + azasbsbs + asagbibg + azagbabs + azagbsbs + azarbibs + asarbaby+

+ asagbi1by + agasb1bg + agasbobs + agasbsby + agagbibs + agagbaby + agarb1by + a1asbabig+

+ ajagbsbg + a1a2bgbg + ajazbsbg + araszbsbg + ajasbgby + ajasbsbg + a1aqbsb; — 2a2a3b1b11—

— 2asazbabig — 2a2a3b3bg — 2a0a4b1b19 — 2a9a4b2bg — 2asa4b3bgs — 2aza4b1bg — 2a3a4b2bg—

— 2as3a4b3by — dasarbabs — 4asagbibs — dagarbibs — 4agagbiba + 2a1a5b1b11 + 2a1a5b2b19+

+ 2aiasb3bg + 2a1agb1b19 + 2a1a6babg + 2a1agbsbsg + 2a1a7b1bg + 2a1a7bobg + 2a1a7b3br+

+ 2ayagbibs + 2ayagbaby)/a} (89)



c7 = — (agagbsbg — a%bg — a%b% — a%bg — alagbg — alagbi — 2a5a7b§ — 2a6agb% — 2a$b1b3 — aiblbg—

— a3bobg — albsby — albibyy — a3babig — adbsbg — adbsbiy — 2a3brby — 2a3bgbio — 2a1a5bsbe—

— 2aja6babg — 2a1a7babs — a%bg + asa7babg + asarbsbs + agsagbibg + asagbabs + asagbsby+

+ asgasbsbg + asagbabs + azagbsbs + azarbibg + asarbabs + asarbsby + asagbibs + asagbobs+

+ aqasbabg + aqasbsbs + aga6bi1be + asagbabs + asagbsby + agarb1bs + agarbaby + agagbibs+

+ aja2b4b11 + aja2bsbig + aja2beby + ajasbabio + a1asbsbg + a1asbebs + ajasbaby + a1a4b5bs+

+ a1a4bgb7 — 2a9a3bob11 — 2a9a3b3big — 2a0a4b1b11 — 2a0a4bob19 — 2a0a4b3bg — 2a3a4b1b19—

— 2aza4bobg — 2a3a4b3bgs — 4asagbabs — dagarbabs — 4agagbibs — 4aragbiba + 2a1a5bob11+

+ 2aiasb3big + 2a1a6b1b11 + 2a1a6b2b1g + 2a1a6b3byg + 2a1a7b1b1g + 2a1a7b2bg + 2a1a7b3bs+

+ 2ayagb1bg + 2a1agbobs + 2a1agb3b7)/a% (90)
cg = — (agarbsbg — a1a7b§ — 2a5a8b§ — 2a6a7b§ — 2a7a8b§ — 2a§b1b2 — 2a%b2b3 — aiblblg—

— a3bobg — albsbg — albobyy — a3bsbig — 2a2bgbyy — 2a2bgbig — 2a1a6bsbs — 2a1arbybs—

— 2aiagbabs — a1a5b§ + agagbabg + asagbsbs + asagbsbs + asarbobg + azarbsbs + asagbibg+

+ agagbabs + asagbsby + agasbsbg + asagbabs + asagbsbs + agarbibg + agarbabs + agarbsbs+

+ agagb1bs + agagboby + ajasbsbi1 + aiasbgbig + arasbsbi1 + arasbsbig + ajasbgbg+

+ ar1aqbsbig + a1a4bsbg + arasbgbs — 2a0a3b3b11 — 2a0a4b2b11 — 2a0a4b3b1g — 2a3a4b1b11—

— 2a3a4b2b19 — 2a3a4b3bg — dagagbobs — daragbibs + 2a1a5b3b11 + 2a1a6b2b11 + 2a1a6b3bio+

+ 2a1a7b1b1y + 2a1a7babig + 2a1a7b3bg + 2a1agbibig + 2a1agboby + 2a1agbsbs)/a? o1
Ccg = — (fa%bfo — 2b9b11a% + bi1arasbs + ajasbebig + a1asbsbig + bgaiasbs + babriaias + 2b11a1a7bs+

+ 2aya7bsbig — 2a1arbsbs + 2a1agbabig + 2bgaragbs — ajaghi — 2bsaragbe + 2bibriaiag+

+ 2agb11a1b3 — a6a1bg + asbi1a1bg — bnagbg — 2b11agaqsbs — 2aszaqabsbio + azarbsbg + azagbobe+

+ azagbsbs — a2babig — boaibs — bibi1as + asarbebe + agazbsbs + asagbebs + byasagbs+

+ biagagbg + agasbsbs — 2a9b11a4b3 — a%b% — 4daragbobs — a%b% — 2b1a§b3 — 2a6agb§+

+ a2a8b3b6)/a% (92)
c10 = — (—2bigb11a? + bigaiasbs + bsbiiaiay + 2bigaragbs — 2bsaiagbs + 2bybiiaag+

+ 2a7bi1a1bs — ayaib + asbiiaibg — bipalbs — babyia? + bsagagbs + boagagbs + arasbsbs—

— 2a3bi1a4b3 — 2b2a§b3 — 2a7agb§ + a3a8b3b6)/a% (93)
c11 =(a%b%1 — ara4bgb11 — 2a1a8b3b11 + alagbg + aibgbn — agagbsbg + a%bg)/a% (94)

This is a 10" degree polynomial in z that can be solved by computing its real roots. Afterwards, we can
back-substitute this value of z into the equations as specified in Sec. 2.2, and get the respective coordinates of the
vanishing point on the mirror.

B. Appendix for the computation of direction for a given vanishing points

This section includes some useful information for the derivation of the proposed solution to compute directions,
from a given vanishing points.

B.1. Coefficients of the polynomial equations Sec. 2.3

In this section we present the coefficients of the polynomial equations 1-[sq, s3] and x3g[s1, 52, s3]



1
K17 [S1,82] = a1s1 + azs,

where

a1 = 4Cc3 —4Cz1 — Bcy + 44z} + 4Bz} — 3Bz — 4472} + 4BC

- 4142632% + 8ACz; — 4Bcoy; — 4Bcsz — 8ABZ% — 4A03z% — 8Acoy121 — 4ABc3zy;

ag = 4A2ylz% - 402A2z% + 4ABy1z1 — 40 ABz — 4Ay12%+

(95)

(96)

+ 8cgAy1z1 + 402Azf + Ble —B* + +4c3 By + 4ce Bz + Sngf —4Cy; —4Ccy, (97)

and:

2 2 2 2
Kig [81, S92, 83] = 6181 + 5282 + b3$2$3 + b483

with:

by =(Bcg — By — 2c3y1 + 2y121 + 2Acoz — 2Ay121)2
by =(y3 + 22 — 1)(B + 2c3 — 221 + 2A2)?
by = — 462(1/% + Z% — 1)(3 + 2¢c3 — 221 + 2A21)

by =dci(yi + 27 — 1)

B.2. Numerical Example

Although it was not mentioned in the paper, we ran some
numerical examples, to validate the proposed techniques. For
that purpose, let us consider the example of a mirror defined by
A = —0.15, B = —0.30 and C = —0.03 (hyperbolic), and
two chessboard in the planes z = 2 and y = —2 as shown
in Fig. B.1, in which ¢ = —0.5 and c3 = —0.8. By ob-
serving the infinity line, we can pin-point a vanishing point
at [u,v] = [748.1,650.0] (in red). Using the techniques de-
scribed in previous section, we will determine the direction that
generated this vanishing point.

By backward projecting the point into the mirror, we dis-
cover its coordinates as being v = |[z,y,2] € Q =
[—0.0670, —0.0463, 0.1155]. We then substitute it in equations

(©8)) to (102) to obtain:

a1 =0.1003 (103)
az =0 (104)
b1 =0.0045 (105)

By substituting in (25) of the main article, we obtain:

s2 =0,

(98)

99)
(100)
(101)
(102)

Figure B.1: Image of a hyperbolic catadiop-
tric camera, with several parallel lines, and

their respective vanishing points.

by = —0.0211
bs =0.0195
by = — 0.0045.

(106)
107)
(108)

(109)



and:

s3 = — 0.7071 (110)
s1 =+ 0.7071 . (111)

Hence, we discover that the 3D straight line in the world that generated the vanishing point v had the direc-
tion s = [—0.7071,0,—0.7071] by considering the underlying camera system (we can ignore the solution
s’ = [-0.7071,0,0.7071]).

The other points shown in Fig. B.1, have the correspondent directions:

Red points: s = [—0.7071,0, —0.7071]
Yellow points: s = [—0.7071,0.7071, 0] (112)
Cyan points: s = [0.7071,0.7071,0] .
C. Appendix for computations related to Vanishing Curves

In this section we present some details regarding the results obtained for the parameterization of the vanishing
curves.

C.1. Computing a Curve at the Infinity

In this subsection, we present the full derivation of v(r) as presented in Sec. 3 (Curves at the Infinity). Consider
the equation defined in Sec. 2.1 (planar constraint):

kily, 2]x + K3[y,2] = 0 (113)
We start by using s as defined in Eq. 28 of the main article in (113)), and obtain a new equation:
Kooy, 2, alx + K33y, z,a] =0 (114)
In addition, by replacing s as shown in Eq. 28 of the main article in x9[y, z], we obtain:
K3y [y, 2, a] = 0. (115)

Since (TT3) is linear on «, one can use this constraint to define « as:

sly-c] (116)

K26 [y,2]"

o =

To conclude the definition of the curve at the infinity, we replace «, as derived in the previous equation, in (TT4),
resulting in:
T(r) := K3o[y, 2]z + Ky [y, 2] = 0 (117)

where the coefficients of k3;[y, z] and k3, [y, z] are defined in Appendix. As already presented in the main
paper (Sec. 3), the curves in the infinity are projected onto the mirror as follows:

v(r) == {r =[z,y,2] € R3:T(r) A Q(r) = 0}. (118)
To be able to define a curve in the mirror, we solve I'(r) for x and replace the result in (r), defining:
w7ly. 2] = 0, (119)
obtaining a different (though equally valid) definition of the curve as:

v(r) = {[x,y, 2] eR3: kS [y, 2] =0 A 2? = —y* — A2 — Bz + C}. (120)

8



Table 1: Degrees of the polynomial equation that can be used to compute lines at the infinity, for specific catadiop-
tric camera systems. We use D denotes the degree of the polynomial equation, and /N the number of coefficients.

The * in the table implies that one needs to consider a possibility of z = 0.

Mirror Type ‘ ‘ N ‘

General

General Axial (co = 0)

Spherical Axial (A =1, B = 0)
Ellipsoid Axial (A = 0, C' = 0)
Conical Axial (B =0,C = 0)
Cylindrical Axial (A =0, B =0)

NI ENENF-NEN e
—
[\

The reason why we could want this alternative definition would be to simplify the process of calculating the
actual points that belong to the curve. The coefficient of the general expression for ﬂg7[y, z| are presented in

Appendix [C.§]

Similarly to what happens in the estimation of the vanishing points, the complexity of the polynomial equation
k57[y, 2] can be significantly reduced when considering specific camera configurations. In Tab. 1} we present a

table with the variation of the degree of the polynomial equation x$-[y, 2] for some specific cases.

C.2. Coefficients Curves at the Infinity

In this subsection we show the coefficients for the parameterization of I'(r) (namely polynomial equations

r3[y, 2] and k3, [y, z]), that can define the curve at the infinity. We define:

m%o[y, z] = a1y + as2® + asz + ay

where:

a1 =8c2(51,252,3 — $2.251,3)

ag = — (512523 — 52.2513)(—4A% + 4A)

a3 =(8Acs + 4AB)(s1,252,3 — 52,.251.3)

as =(s1,282,3 — 527251’3)(32 + 4e3B — 40,
and:

K1 [y, 2] = bry? + boyz® + bayz + by + bsz> + bgz? + brz + bg

where:

b1 =8s32,151,3¢2 — 851,152,3C2
by =4As1,1523 —4As21513 — 4A231715273 + 4A2527151,3
b3 =4ABsg 1513 — 4ABs1,1523 + 8As1,152.2c0 — 845915122 — 8A51,1523¢3 + 8AS91513¢3
b4 24081’18273 — 4082’181,3 — 3281’132,3 + 32827131,3 + 43817152,262 — 4B82,1317202—
— 4B817182’363 + 43827181,363

2 2
bs =4A82713172 — 4A5171$2’2 +4A $1,152,2 — 4A 52,151,2

(121)

(122)

(123)

(124)
(125)
(126)

(127)
(128)



be =4B<S’2718172 — 4381,182,2 + 4A28171827302 — 4A28271517362 + 4A28171827203 — 4A28271817263+
+ 8ABSl718272 — 8ABSQ718172 — 4./48171827302 + 4A8271817302 + 4A8171$27263 — 4A8271817203 (129)
b7 =4081,18272 — 4082,18172 + 332817182,2 — 332827181’2 — 8140317182,2 + 8AC$27181’2—

— 43817182,362 + 4382’1817302 + 4B81,182’203 — 43827181,263 + 4ABSL1827302—

— 4ABSQ7181,3C2 + 4ABSL1827203 — 4143827181,263 (130)
bg 2328171827362 - B28271517362 + 325171827203 — B28271817263 - 4B081718272 + 430527181,24-
+4C's1,182,3c2 — 4CUs9,151,3¢0 — 4C's1,152.2¢3 + 4C' 52,151 2€3. (131)

Specific cases for specific types of camera position and type of mirror are shown in Appendix. [C.3to
C.3. Coefficients of curves at the infinity: Axial case

In the axial case, the camera movement has to be restricted to motion in the u, axis, therefore, co = 0:

H%O ly, z] = (s1,252,3 — 327231,3)(a1z2 + asz + as), (132)
with:
a1 =4A% — 44 (133) as =8Acs + 4AB (134) az =B? + 4¢3 B — 4C,  (135)
and:
Ky [y, 2] = biyz? + boyz + bsy + byz> + bs2? + bz + br, (136)
with:
b1 =4A81’182,3 — 4A82,1$173 — 4A281,1$273 + 4A282,1$173 (137)
b2 :4143827181,3 — 4AB$17182,3 — 8A81,1827303 + 814827181,303 (138)
bg 240517182’3 — 40827151’3 — B281715273 + B282715173 — 4B8171527303 + 438271817303 (139)
b4 :414527181,2 — 4A817182,2 + 4A281718272 - 4A282718172 (140)
bs :43827181,2 — 43817182,2 + 4142817182,263 — 4A282,1817203 + 8143817182’2 — 8143827181,2-5-
+ 4A817182’263 — 4A82,1817203 (141)

b6 240817182’2 — 40827151’2 + 3B281718272 — 3B252718172 — 8A051718272 + 8A052’18172+
+4Bs1,152,0¢c3 — 4Bs2151,2c3 + 4ABs1 15223 — 4ABSsy 151 2¢3 (142)
b7 2328171827263 — 328271817263 — 43081,18272 + 4BC$2’13172 — 4081,1827263 + 4082,1817203. (143)
C.4. Coefficients of curves at the infinity: Spherical mirror (A = 1, B = 0)

Constraints for the spherical mirror are:

Ko [y, 2] = (s1,282,3 — $2,251,3)(a12 + az), (144)

with:
a1 =8cs (145) ag = —4C, (146)

and:
m%l [y, z] = biyz + bay + bsz% + byz + bs, (147)

with:
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b1 =8s2,151,3c3 — 851,182,3¢3 (148) by =4Cs21812 — 4Cs1,1822

bg 24081718273 — 4082718173 (149) b5 24082,1817263 — 4081,1827263.

b3 =851,152,2¢3 — 852,151,2C3 (150)

C.5. Coefficients of curves at the infinity: Ellipsoid mirror (A = 0, C = 0)

Constraints for the Ellipsoidal mirror are:

Hgo [y7 Z] = (51,282,3 - 52,251,3)a1a

with:
a —B? + 4e3B,
and:
w31 [y, 2] = b1y + baz? + bgz + by,
with:

by =B%sy 1813 — B?s1,152,3 — 4Bs1,152,3¢3 + 4852151 3¢3
by =4Bsgy 1512 — 4Bs1,152,2
b3 =3B281,18272 — 33282718172 + 435171827203 — 4382,1817203
ba =B2817182’263 — 3282,131,203-

C.6. Coefficients of curves at the infinity: Conical mirror (B = 0, C' = 0)

Constraints for the conical mirror are:

“go [y, 2] = (51,2523 — 82,281,3)(a1z2 + asz),

with:
a; =4A? —4A (161) as =8Acs,
and:
K31 [y, 2] = biyz® + bayz + bgz® + by2?,
with:

by =4As1,1523 —4As9151,3 — 4A2817182,3 + 4A2827181,3

by =8As151,3c3 — 8As1,152,3¢3

by =4As 1512 —4As11522 + 4A2517182,2 — 4A2527181,2

b4 =4A23171327203 - 4A23271317203 + 4As1 18003 — 4AS2151,2¢3.
C.7. Coefficients of curves at the infinity: Cylindrical mirror (4 = 0, B = 0)

Constraints for the cylindrical mirror are:

’ﬁgo ly, 2] = (81,282,3 — $2251,3)a1,

with:
a1 = —4C,
and:
k31 [y, 2] = bry + boz + b3
with:
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(151)
(152)

(153)

(154)

(155)

(156)
(157)
(158)
(159)

(160)

(162)

(163)

(164)
(165)
(166)
(167)

(168)

(169)

(170)



b1 =4C's1,1823 — 4Cs2151 3 (171) bs =4C's9 151 ,2c3 — 4Cs1,152,2C3. (173)
bQ 24081718272 - 4082718172 (172)

C.8. Solving Curves at the Infinity
In the general case, from Sec. we obtain the following expression for x5 [y, 2]:
KS:[y, 2] =a1y® + apy®2? + asyPz + agy® + asyP2t + agy?2d + ary?2® + agy®z + agy® + aroy2S+

+ a11y24 + a12y23 + algyz2 + a1qyz + aizy + a1626 + a17z5 + a1824 + a19z3 + a2022+ (174)
+ a212 + aoy

where:

ay =64n3n3ci + 64ninic (175)
ag = — 16ngn3ca(—4nanz A% + dngng A) — 16nin3co(—4A% + 4A) (176)
as =16n2n302(8An§02 + 4ABnons + 8 Angngcs) + 1671%71%62(81463 + 4AB) (177)
a4 =16n%n302(32 +4esB —4C) + 16n2n302(n232n3 + 4CQBn§ + 4ngc3Bng — 4Cnans) (178)
as =(—4nanz A% 4+ dngng A)? 4+ nin3(—4A% + 4A)* (179)
ag = — 2(—4nongA? + dnynz A)(8An3cy + 4ABnons + 8 Angnscs) — 16ngnzco(—4A%n3 + 4An3)+

— 2n2n3(8Ac3 + 4AB)(—4A? + 4A) (180)

ar =(8A’I’Z§CQ + 4ABnons + 8An2n363)2 — 2(—4n2n3A2 + 4n2n3A)(nngn3 + 4CQBTZ§ + 4ngcaBns+
— 4Cnon3) — n3n3(2(—4A% + 4A)(B? + 4¢3B — 4C) — (8Acs 4+ 4AB)?) + 64An3nici+
+ 16n2n302(4A2n303 - 4Bn§ + 8ABn§ + 4An303 — 4A%n9n3¢0 + 4Ananscy) (181)
as =2(8An§CQ + 4ABnons + 8An2n303)(n232n3 + 4CQBTL§ + 4ngcsBng — 4Cnans) + 2n%n§(8A03+
+4AB)(B? + 4c3B — 4C) + 64Bn3n’cs + 16nanzce(40n3 + 3B*ni — 8ACN3 + 4Bnjcs+

+ 4ABn2c3 + 4Bnanzcy — 4ABnanscsy) (182)
ag =(n9B*n3 + 4ca Bn3 + 4nayczBng — 4Cnans)? + nin3(B? + 4c3B — 4C)% — 64Cnin3ci+
— 16nan3ca(—c3B*nj + naca B*ng + 40 Bnj + 4Cc3n3 + 4Cnacong) (183)
ayg =2(—4A*n3 4+ 4An3)(—4nonz A% + 4ngnz A) (184)
ayn = — 2(—4An3 + 4An2)(8An3cy + 4ABngns + 8Anonscs) — 2(—4nanz A% + dngnz A)(4A%n3cs+
- 4Bn§ + SABng + 4An§c;), — 4A%n9nge0 + 4Angngce) — 16An%n§cz(—4A2 +4A) (185)

a2 :2(8An362 + 4ABnons + 8An2n303)(4A2n303 — 4Bn§ + 8ABn§ + 4An303 — 4A’ngngea+
+ 4Angnzcy) — 2(—4ngnz A% + 4nanz A)(4Cn3 + 3B*n3 — 8ACN3 + 4Bn3cs + 4ABnics+
+ 4Bngnscy — 4ABnanscy) — 2(—4A2n§ + 4An§)(n2B2n3 + 402Bn§ + 4noc3Bnsg+
— 4Cngng) — 16Bninica(—4A% + 4A4) + 16 Anin3ca(8Acs + 4AB) (186)
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a3 =2(—4n2n3A2 + 4n2n3A)(—03B2n§ + noca B*ng + 4CBn§ + 4003n§ + 4Cngcang) + 2(8An?2)02+

+ 4ABnans + 8Angnacs)(4Cn3 + 3B%*n3 — 8ACN3 + 4Bnics + 4ABn3cs + 4Bnanzca+

— 4ABngnacy) + 2(nyB*ng + 4c2Bn§ + 4ngc3Bns — 4Cn2n3)(4A2n303 - 4Bn§ + SABng—I-

+ 4An§03 — 4A%n9n3¢0 + 4Anongces) + 16An%n§CQ(B2 +4e3B —4C) + 16C’n%n302(74142 +4A4)+

+ 16Bninica(8Acs + 4AB) (187)
ala :2(n232n3 + 4C2,Bn:2)’ + 4noc3Bng — 4Cn2n3)(40n§ + 3B2n:2), — 8ACn§ + 4Bn§c:f, + 4ABTL§C3+

+ 4Bnonscy — 4ABnanscy) — 2(8An§cz + 4ABnons + 8An2n363)(—03B2n§ + noca B*ns+

+ 4C’Bn§ + 40037152)) + 4Cngcang) + 163n%n362(32 + +4c3B — 4C) — 16071?71302(81403 + 4AB)

(188)
a5 = — 2(ngBQn3 + 402Bn§ + 4nsczBng — 40712713)(*63327% + noca B%ng + 4C’Bn§+
+ 4Cc3n? + 4Cnacang) — 16Cn3n3ca(B? + 4c3B — 40) (189)
a1 =(—4A%n3 + 4An%)? + Anini(—4A% + 4A)? (190)
ayr =Bnin3(—4A% + 4A)% — 2(—4A%n3 + 4An3)(4A%n2cs — 4Bn3 + 8ABn2 + 4An3cs+
— 4Angnzce + 4Angnscs) — 2AnIn3(8Acs + 4AB)(—4A% + 4A) (191)

a1z =(4A%n3c3 — 4Bn3 + 8ABN3 + 4An3cs — 4A%nonsco + 4Angngcs)? — 2(—4A%n3+

+ 4An3)(4Cn3 + 3B*n% — 8ACN3 + 4Bnkcs + 4ABn3cs + 4Bnangcy — 4ABnanscs)+

— Cnin3(—4A? +4A)? — Anin3(2(—4A% + 4A)(B? + 4c3B — 4C) — (8Ac3 + 4AB)*)+

— 2Bn3n3(8Acz + 4AB)(—4A? + 4A) (192)
arg =2(—4A%n% + 4An2)(—c3B*n2 + nacaB*ns + 4CBn3 + 4Cc3n? 4+ 4Cnacons) +

+ 2(4A%n%c3 — 4Bn3 + 8ABn: + 4Ankcs — 4A%nansce + 4Angngcy) (4003 + 3B%*nk — 8ACN3+

+ 4Bn?cs + 4ABn3cs + 4Bnongcy — 4ABnanscs) — Bnin3(2(—4A2 + 4A)(B? + 4c3B — 4C0) +

— (8Ac3 + 4AB)?) + 2An3n3(8Acz + 4AB)(B? + 4c3B — 4AC) + 2Cn3n3 (8 Acz+

+ 4AB)(—4A% + 44) (193)
aso =(4Cn§ + 33271% — 8ACn§ + 4Bn§c;), + 4ABn§03 + 4Bngnscy — 4ABnongc)? +

— 2(—c3B*n3 + naca B*ng + 4CBnj + 4Cc3nj + 4Cnacans)(4A%njcs — 4Bnj + 8ABn3+

+ 4Ankcs — 4A%nanzcy + 4Anonsces) + Anini(B? + 4csB — 4C)? + Cnind(2(—4A%+

+4A)(B? 4 4c3B — 4C) — (8Ac3 + 4AB)?) + 2Bn?n3(8Acz + 4AB)(B? + 4c3B — 4C) (194)
as1 =Bn%n§(32 + 4c3B — 40)2 — 2(—63B2n§ + ngca B%ng + 4CBn§ + 400371% + 4Cn202n3)(40n§+

+ 3B%n% — 8ACN3 + 4Bnkcs + 4ABn3cs + 4Bnangcy — 4ABnanscs) — 2Cn3n3 (8 Acs+

+4AB)(B? + 4c3B — 40) (195)
a9y =(—c3B*n3 + nacaB*n3 + 40 Bn3 + 4Cc3n3 + 4Cnacanz)® — Cnini(B? + 4c3B — 4C)? (196)

To conclude, we can obtain all the points in curve at the infinity by traversing either y or z in the range desired

and obtaining the other from x$;[y, 2] = 0. Afterwards, we can get the = for each individual point by using the
fact that the point must be on the mirror surface (2(r) = 0).
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D. Vanishing Points in Central Unified Spherical Model

In this section we propose a simpler solution to the analytical modeling of vanishing points in central cata-
dioptric camera systems. For that purpose, we considering the central unified model proposed in [2| [1]. Next,
we present the projection of 3D straight lines using the sphere model and present a solution to the modeling of
vanishing points.

D.1. Line Projection

Wen considering the central unified sphere model, 3D lines are projected into the sphere, by considering that
the line is on a plane that constrains the line and the origin of the catadioptric system. Let us denote this plane as:

M=[l I I5 0], (197)

This line is then projected onto the sphere in a circle (intersection between the plane II and the unit sphere),
which is the projected into the conic C in the canonical image planeE], using the implicit relation:

][R - - B2 hb(1-€) L] [e
Yy lllg(l — 52) l%(l — 52) — l%fQ lzlg y =0=
1 Ly lol3 211

c
e12? + egxy + esx + eqy® + esy +eg =0 (198)

for some coefficients e; (forz = 1,...6) and unknowns z and .

D.2. Modeling Vanishing Points using the Central Unified Model

Now that we have defined the projection of the curves into the canonical image plane, the estimation of the
vanishing points is given by the intersection points of the projection of two parallel 3D lines into the canonical
image plane. By knowing two parallel lines, we have two 2-degree polynomial equations as shown in (198):

erx? + eaxy + e3x + e4y2 +e5y +eg =0, (199)
f1a® + faxy + faz + fay? + fsy + fo = 0. (200)
Then, the intersection of these two polynomial equations (which represents the intersection of two quadratic

curves) can be estimated by solving one of the functions in terms of = (lets say (199)) and substituting the re-
sult in the second. After some simplifications, we get:

+ +1/e2y? +2 +e2—4 2_4 —4
L _ et ey \e3y? + 2ezezy 263 creay? —deresy —deres 201
“9e;

g1yt + 92 + 93y° + gay + g5 = 0. (202)
which can be solved by estimating the roots of the four degree (202) and back substituting the resulting y in (201)).

E. Numerical Example of the Absolute Pose Estimation using Minimal Data

"Notice that this is an intermediate projection, it does not represent directly the image pixels.
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Although it was not mention in the paper, we illustrate the
procedure used to estimate the camera pose (Sec. 4.2), by
considering a numerical example. For this purpose, we con-
sider the minimal data case, i.e. consider two know direc-
tions in the world coordinate system: d1 = [0,1,0], dy =
[0.7071,0.7071,0] and d3 = d1 X dz = [0,0, 1], and the im-
age shown in Fig. E.2. By using the correspondent vanishing
points, we can determine d, do and d3 to be:

d; =[—0.7071,0.7071, 0] (203)
ds =[0, 1,0] (204)
ds =d; x dy = [0,0,-0.7071] , (205)

Figure E.2: Image of a spherical catadioptric
and obtain: camera, with two parallel lines, their respec-
tive vanishing points, and some points from
each line marked in yellow.

0.7071 —-0.7071 0
R= 07071 0.7071 Of, (206)
0 0 1

using the Procrustes problem.

Since we now know the rotation matrix R, we can use
it to estimate the translation parameters as explained also in Sec. 4.2. Considering that the two lines in
Fig. E.2 are represented in the 3D world by 1; = ($;,m;) = (0,1,0,1,0,0) and L = (S2,my) =
(0.7071,0.7071,0,0.7071, —0.7071, 2.8284), we can obtain a linear system of three equations (using the three
yellow points in Fig. E.2, j = 1, 2, 3), as shown in Sec. 4.2. Then, one can estimate the translation parameters as:

—0.6587 —0.6587 0.1965 —0.1965
A=|-05306 —0.5306 0.1299 |,b=|-0.1299 . (207)
~0.6676 0  —0.7087 0.7087
and:
t=Ab=[0 0 —1]". (208)

Both estimated values of rotation and translation parameters correspond to the ones introduced in this simulated
environment.

References

[1] J. P. Barreto and H. Araujo. Issues on the geometry of central catadioptric image formation. In IEEE Computer Vision
and Pattern Recognition (CVPR), volume 2, pages 422-427, 2001.

[2] C. Geyer and K. Daniilidis. A unifying theory for central panoramic systems and practical implications. In European
Conf. Computer Vision (ECCV), pages 445461, 2000.

15



