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Abstract

This document provides the following additional contri-
butions to our CVPR 2018 submission:

• In Section 1, we provide the derivation of the formulas
for the forward and backward pass of our mDA layers.

• In Section 2, we give additional details about the net-
works employed in our experimental analysis and the
associated training protocols.

• In Section 3 we show additional experimental results
on the PACS dataset.

1. mDA layers formulas
From the main text, we have the output of our mDA layer

denoted by

yi = mDA(xi,wi; µ̂, σ̂) =
∑
d∈D

wi,dx̂i,d, (1)

where, for simplicity:

x̂i,d =
xi − µ̂d√
σ̂2
d + ε

, (2)

and the statistics are given by

µ̂d =

b∑
i=1

ŵi,dxi,

σ̂2
d =

b∑
i=1

ŵi,d(xi − µ̂d)
2,

(3)

where ŵi,d = wi,d/
∑b
j=1 wj,d.

From the previous equations we can derive the partial
derivative of the loss function with respect to both the input

xi and the domain assignment probabilities wi,d. Let us
denote ∂L

∂yi
the partial derivative of the loss function L with

respect to the output yi of the mDA layer. We have:

∂x̂i,d
∂σ̂2

d∗
= −1d=d∗

1

2
(xi − µ̂d∗) · (σ̂2

d∗ + ε)−
3
2 ,

∂x̂i,d
∂µ̂d∗

= −1d=d∗(σ̂
2
d∗ + ε)−

1
2 ,

(4)

and

∂σ̂2
d

∂xi
= 2 ŵi,d · (xi − µ̂d),

∂µ̂d
∂xi

= ŵi,d. (5)

Thus, the partial derivative of L w.r.t. the input xi is:

∂L

∂xi∗
=
∑
d∈D

wi∗,d√
σ̂2
d + ε

[
∂L

∂yi∗
−Ad − x̂i∗,dBd

]
, (6)

where:

Ad =

b∑
i=1

ŵi,d
∂L

∂yi
,

Bd =

b∑
i=1

ŵi,dx̂i,d
∂L

∂yi
.

(7)

For the domain assignment probabilities wi,d we have:

∂µ̂d
∂ŵi,d∗

= 1d=d∗xi, (8)

∂σ̂2
d

∂ŵi,d∗
= 1d=d∗(xi − µ̂d)

2, (9)

∂ŵi,d
∂wi∗,d∗

= 1d=d∗
1i=i∗

∑b
j=1 wj,d − wi,d

(
∑b
j=1 wj,d)

2
. (10)

Thus, the partial derivative of L w.r.t. wi,d is:

∂L

∂wi∗,d
= x̂i∗,d

(
∂L

∂yi∗
−Ad

)
− 1

2

(
x̂2i∗,d −

σ2
d

σ2
d + ε

)
Bd,

(11)
where Ad and Bd are defined as in (7).
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2. Networks and training protocols
In this section, we provide additional details about the

networks and training procedures employed for the experi-
ments on digits datasets, Office31 and Office-Caltech.

The network adopted for the evaluation on digits datasets
is the standard architecture from [3]. It is composed by 3
convolutional layers, the first 2 followed by max pooling,
and 2 fully-connected layers before the final classifier. The
2 fully-connected layers are followed by dropout [4]. For
all the experiments the architecture is trained for 15000 it-
erations. Following the protocol described in [1, 3], we set
the initial learning rate l0 to 0.01 and we anneal it through
a schedule lp defined by lp = l0

(1+γp)β
where β = 0.75,

γ = 10 and p is the training progress increasing linearly
from 0 to 1. We rescale the input images to 32× 32 pixels,
subtract the per-pixel image mean of the dataset and feed
the networks with random crops of size 28× 28.

For the experiments with the AlexNet architecture, we
fix the parameter of all convolutional layers (denoted as
conv1 – conv5), while fine-tuning the fully-connected
ones (denoted as fc6 – fc8). mDA-layers are inserted fol-
lowing fc6, fc7 and fc8 and before their corresponding
activation functions. The network is trained for 60 epochs
with a batch-size of 256. The batch is split between source
and target samples proportionally to the number of images
of the different domains. We use stochastic gradient descent
as optimizer, with a learning rate of 10−3, a weight-decay of
0.0005 and a momentum of 0.9. The final classifier has an
higher learning rate, 10−2, and all the learning-rate values
are scaled by 0.1 after 90% of the epochs. We rescale the in-
put images to 256×256 pixels, subtract the per-channel im-
age mean (computed on ImageNet) and feed the networks
with random crops of size 227× 227.

3. Additional results on the PACS dataset
In this section we provide some additional quantitative

and qualitative results on the PACS dataset. The first series
of experiments further demonstrates the importance of con-
sidering multi-source DA models over single-source ones.
In a second series of experiments we evaluate the ability of
our approach to discover latent domains.

3.1. Importance of multi-source DA

Similarly to Table 1 of the main paper, we first report the
performances of our model for different values of k. Ta-
ble 1 shows the results. As k increases from 1 to 3 (where 1
is the unified sources model [2] and 3 is the actual number
of source domains) the average accuracy also improves. For
values of k larger than 3 the performance saturates, obtain-
ing a similar trend to that we observed in the experiments
on the digits datasets.

To further demonstrate the advantages of adopting a

Table 1: PACS dataset: performances of our model for dif-
ferent values of k with the ResNet architecture. The first
row indicates the target domain, while all the others are con-
sidered as sources.

Method Sketch Photo Art Cartoon Mean
DIAL [2] 66.8 97.0 87.3 85.5 84.2
Ours k=2 68.1 96.9 87.2 86.4 84.7
Ours k=3 69.6 97.0 87.7 86.9 85.3
Ours k=4 70.4 97.1 87.7 87.3 85.6
Ours k=5 72.1 96.9 86.5 87.1 85.6

Figure 1: PACS dataset: classification accuracies of the
Multi-source DA model as CNN feature representations of
a domain are aligned using statistics of a different domain.

multi-source domain adaptation approach and the benefit of
considering different statistics for aligning features of dif-
ferent domains, we conduct an additional analysis. Specifi-
cally, we consider the Multi-source DA method and analyze
how the performance of the target classifier varies when
adopting the batch normalization statistics of different do-
mains. In other words, we substitute the statistics of DA lay-
ers for the target model with those associated to one of the
source domains, observing how this change influences the
performances. Of course, we also consider the case where
the ”right” statistics, i.e. those corresponding to target do-
main, are used. We repeat this analysis for each possible
combination of sources/target domains. Figure 1 shows the
results. Each group of four color bars indicates a different
experiment (i.e. a different target domain).

As expected, when the statistics of Sketch are used, there
is a huge drop in performances in every scenario (i.e. when
Photo, Art and Cartoon are considered as target) due to the
distance of the feature distributions of this domain from
those of the other domains. When Sketch is considered
as target, the accuracy decreases significantly if the statis-
tics of Photo or Art domains are employed. Instead, using
the statistics derived from the Cartoon domain, higher accu-
racy is obtained. This is not surprising due to the similarity



in visual appearance between images of the Cartoon and
the Sketch domains. Importantly, only a multi-source DA
model can exploit this similarity, while traditional single-
source approaches will not suffice.

3.2. Latent domain discovery

To demonstrate the ability of our approach to discover
latent domains we provide some additional results.

We first show how our approach assigns source samples
to different latent domains. Assignments are computed con-
sidering the soft-max scores obtained with the domain pre-
diction branch. Figure 2 reports the percentage of source
samples assigned to each latent domain. The four plots cor-
respond to a single run of the experiments reported in Table
2 of the main paper. Each plot is associated to a different
target domain. Different colors are associated to the orig-
inal source domains, while the x-axis indicates the latent
domain. Interestingly, when either Cartoon (Figure 2c) or
Sketch (Figure 2d) are considered as target domains, sam-
ples from Photo and Art tend to be associated to the same
latent domain. Similarly, when either Photo (Figure 2a) or
Art (Figure 2b) are considered as target domains, samples
from Cartoon and Sketch tend to be grouped together. These
results confirms the ability of our approach to assign images
of similar visual appearance to the same latent distribution,
in order to build stronger target classifiers.

Additionally, in Figure 3 we show the top-10 images as-
sociated to each latent domain for each sources/target set-
ting. In each plot each row corresponds to a different latent
domain. It is possible to notice how images associated to
the same latent domain have similar appearance, while there
is high dissimilarity between images associated to different
latent domains. Moreover, images assigned to the same la-
tent domain tend to be associated with one of the original
domains. For instance, in Figure 3a, the first row contains
only images of domain Art, while the third contains only
images of domain Sketch.
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(a) Photo as target (b) Art as target

(c) Cartoon as target (d) Sketch as target

Figure 2: Distribution of the assignments produced by the domain prediction branch for each latent domain in all possible
settings of the PACS dataset. Different colors denote different source domains.



(a) Photo as target

(b) Art as target

(c) Cartoon as target

(d) Sketch as target

Figure 3: Top-10 images associated to each latent domain for the different sources/target combinations. Each row corresponds
to a different latent domain.


