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Appendix
The supplementary material is organized as follows. In

Section 1, we give a full definition of QS-suitable loss func-
tions and in Section 2 we justify the correctness of Algo-
rithm 1. Section 3 contains proofs of QS-suitability of AP
and NDCG losses and Section 4 establishes worst-case com-
plexity of Algorithm 1 as well as a matching lower-bound
on the complexity of solving Problem (6). Several remain-
ing proofs are delegated to Section 5 and we use Section
6 for certain clarifications regarding previous use of NDCG
in the literature. Finally, we report some additional experi-
mental results in Section 7.

1. Complete characterization of QS-Suitable
Loss Functions

A proper loss function ∆ = ∆(R∗,R) is called QS-
suitable if it meets the following three conditions.

(C1) Negative decomposability with interleaving depen-
dence. There are functions δj : {1, . . . , |P|+ 1} → R
for j = 1, . . . , |N | such that for a proper ranking R
one can write

∆(R∗,R) =
∑
x∈N

δind−(x)(rank(x)).

(C2) j-monotonicity of discrete derivative. For every 1 ≤
j < |N | and 1 ≤ i ≤ |P| we have

δj+1(i+ 1)− δj+1(i) ≥ δj(i+ 1)− δj(i).

(C3) Fast evaluation of discrete derivative. For any j ∈
{1, . . . , |N |} and i ∈ {1, . . . , |P|}, can the value
δj(i+ 1)− δj(i) be computed in constant time.
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From (C1), we can see that the loss function de-
pends only on the interleaving ranks of the negative sam-
ples. More accurately, it depends on the vector r =
(r1, . . . , r|N |) where ri is the interleaving rank of the i-th
most relevant negative sample (i.e. with the i-th highest
score).

Another way to interpret this type of dependence is by
looking at the±-pattern of a ranking which can be obtained
as follows. Given a proper ranking R (in the form of a per-
mutation of samples), it is the pattern obtained by replacing
each positive sample with a “+” symbol and each negative
sample with a “−” symbol. It is easy to see that the ±-
pattern uniquely determines the vector r and vice versa and
thus (C1) also implies dependence on the ±-pattern.

2. Justification of Algorithm 1

First key point is that the entire objective function (6)
inherits properties (C1) and (C2).

Observation 1 The following holds:

(a) There are functions fj : {1, . . . , |P|+ 1} → R for j =
1, . . . , |N | such that the objective function in (6) can
be written as

|N |∑
j=1

fj(rj),

where rj is the interleaving rank of the negative sample
x with ind−(x) = j.

(b) The functions fj inherit property (C2). More precisely,
for every 1 ≤ j < |N | and 1 ≤ i ≤ |P| we have

fj+1(i+ 1)− fj+1(i) ≥ fj(i+ 1)− fj(i).

(c) We can compute argmaxl≤i≤r fj(i) inO(r− l) time if
we are provided access to the sorted array {s+i } and to
the score of the negative sample x with ind−(x) = j.
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As a result, solving Problem (6) reduces to computing
the optimal interleaving ranks (or the optimal vector r from
the remark above) 1.

The next vital point is that these interleaving ranks can
be optimized independently. This is however not obvious.
One certainly can maximize each fj but the resulting vec-
tor r may not induce any ranking – its entries may not be
monotone.

But as a matter of fact, this does not happen and Observa-
tion 2 from the main text gives the precise guarantee. This
“correctness of greedy maximization” hinges upon condi-
tion (C2) as will also be demonstrated with a counterexam-
ple given later in Section 6.

All in all, it suffices to compute the vector opt in which
optj = max argmax fj (the maximum ensures that ties are
broken consistently) as is done in the main text of the paper.

3. Properties of ∆AP and ∆NDCG

In this place, let us prove the aforementioned properties
of ∆AP and ∆NDCG.

Proposition 1 ∆NDCG is QS-suitable.

Proof. As for (C1), let us first verify that the functions δj
can be set as

δj(i) =
1

C
(D(i+ j − 1)−D(|P|+ j)) ,

where C =
∑|P|

i=1D(i). Indeed, one can check that

∆(R∗,R)

= 1−
∑

x∈P D(ind(x))∑|P|
i=1D(i)

=
1

C

|P|∑
i=1

D(i)−
∑
x∈P

D(ind+(x) + rank(x)− 1)

=
1

C

∑
x∈N

D(ind−(x)+rank(x)−1)−D(|P|+ind−(x))

=
∑
x∈N

δind−(x)(rank(x))

as desired. As for (C2) and (C3), let us realize that

δj(i+ 1)− δj(i) =
1

C
(D(i+ j)−D(i+ j − 1)) .

Then (C3) becomes trivial and checking (C2) reduces to

D(i+ j + 1) +D(i+ j − 1) ≥ 2D(i+ j)

which follows from convexity of the function D. �

1Note that the value of the objective can be computed efficiently given
a vector r – for example by constructing any ranking R which respects r.

Proposition 2 ∆AP is QS-suitable.

Proof. Regarding (C1), the functions δj were already iden-
tified in [2] as

δj(i) =
1

|P|

|P|∑
k=i

(
j

j + k
− j − 1

j + k − 1

)
so after writing

δj(i+ 1)− δj(i) =
j − 1

j + i− 1
− j

j + i

we again have (C3) for free and (C2) reduces to

2gi(j) ≥ gi(j − 1) + gi(j + 1),

where gi(x) = x
x+i , and the conclusion follows from con-

cavity of gi(x) for x > 0. �

4. Computational Complexity
Now is the time to establish the computational complex-

ity of Algorithm 1 as well as the afore-mentioned matching
lower bound. efficiency.

Theorem 3 If ∆ is QS-suitable, then the Problem (6) can
be solved in timeO(|N | log |P|+|P| log |P|+|P| log |N |),
which in the most common case |N | > |P| reduces to
O(|N | log |P|).

Outside running Algorithm 1, the entire computation also
consists of preprocessing (sorting positive samples by their
scores) and post processing (computing the output from
vector opt). These subroutines have only one non-linear
complexity term – O(|P| log |P|) coming from the sorting.
Therefore, it remains to establish the complexity of Algo-
rithm 1 as O(|N | log |P|+ |P| log |N |).

To this end, let us denote n = r− − `− + 1 and
p = r+ − `+ + 1, and set Tneg(n, p), Tpos(n, p) as the to-
tal time spent traversing the arrays of negative and positive
sample scores, respectively, including recursive calls. The
negative score array is traversed in the MEDIAN and SE-
LECT procedures and the positive scores are traversed when
searching for optm. The latter has by complexity O(p), due
to Observation 1(c), whose assumption are always satisfied
during the run of the algorithm.

Proposition 4 The runtimes Tneg(n, p) and Tpos(n, p) sat-
isfy the following recursive inequalities

Tneg(n, p) ≤ Cn+ Tneg(n/2, p1) + Tneg(n/2, p2)

for some p1 + p2 = p+ 1,

Tpos(n, p) ≤ Cp+ Tpos(n/2, p1) + Tpos(n/2, p2)

for some p1 + p2 = p+ 1,

Tneg(n, 1) ≤ Cn, Tneg(1, p) = 0,



Tpos(n, 1) = 0, Tpos(1, p) ≤ Cp

for a suitable constant C. These inequalities imply
Tneg(n, p) ≤ C ′n log(1 + p) and Tpos(n, p) ≤ C ′(p −
1) log(1 + n) for another constant C ′. Thus the running
time of Algorithm 1, where p = |P| + 1, n = |N |, is
O(|N | log |P|+ |P| log |N |).

Proof. The recursive inequalities follow from inspection of
Algorithm 1. As for the “aggregated” inequalities, we pro-
ceed in both cases by induction. For the first inequality the
base step is trivial for high enough constant C ′ and for the
inductive step we may write

Tneg(n, p) ≤ Cn+ Tneg(n/2, p1) + Tneg(n/2, p2)

≤ Cn+
1

2
C ′n log(1 + p1) +

1

2
C ′n log(1 + p2)

= C ′n

(
C

C ′
+ log

√
(1 + p1)(1 + p2)

)
≤ C ′n log(p1 + p2) = C ′n log(1 + p)

where in the last inequality we used that

1 + (1 + p1)(1 + p2) ≤ (p1 + p2)2

for integers p1, p2 with p1+p2 = p+1 ≥ 3. That makes the
last inequality true for sufficiently high C ′ (not depending
on n and p).

The proof of the second inequality is an easier variation
on the previous technique. �

4.1. Lower Bound on Complexity

In order to prove the matching lower bound (among
comparison-based algorithms), we intend to use the classi-
cal information theoretical argument: There are many pos-
sible outputs and from each comparison we receive one bit
of information, therefore we need “many” comparison to
shatter all output options.

Proposition 5 Let ∆ be a loss function. Then any
comparison-based algorithm for Problem (6) requires
Ω(|N | log |P|) operations.

Proof. Since the negative samples are unsorted on the in-
put and the scores are arbitrary, every possible mapping
from {1, . . . , |N |} to {1, . . . , |P| + 1} may induce the
(unique) optimal assignment of interleaving ranks. There
are (|P|+ 1)

|N | possibilities to be distinguished and each
comparison has only two possible outcomes. Therefore we
need log2

(
(|P|+ 1)

|N |
)
∈ Ω(|N | log |P|) operations. �

5. Remaining proofs
Throughout the text we omitted several proofs, mostly

because they are straightforward generalizations of what al-
ready appeared in [2] and [1]. For the sake of completeness,
we present them here.

Proof of Observation 1 (of main text) : Let R be any op-
timal solution. We check that F (X,R;w) increases if we
swap two samples x, y ∈ P in R with ind(x) < ind(y)
and φ(x;w) < φ(y;w) (it boils down to ac+bd > ad+bc
for a > b ≥ 0 and c > d ≥ 0). Since similar argument ap-
plies for negative samples, we can conclude that R already
has both negative and positive samples sorted decreasingly.
Otherwise, one could perform swaps in R that would in-
crease the value of the objective, a contradiction with the
optimality of R. �

Proof of Observation 2 (of main text) : Recall that optj is
the highest rank with maximal value of the corresponding
fj′ . It suffices to prove that for ij+1 = max argmax fj+1

and ij = max argmax fj , we have ij+1 ≥ ij . Since by
Observation 1 functions fj inherit property (C2), we can
compare the discrete derivatives of fj and fj+1, all left to do
is to formalize the discrete analogue of what seems intuitive
for continuous functions.

Assume ij+1 < ij . Then since

fj+1(ij)− fj+1(ij+1) =

ij−1∑
i=ij+1

fj+1(i+ 1)− fj+1(i)

≥
ij−1∑

i=ij+1

fj(i+ 1)− fj(i)

= fj(ij)− fj(ij+1) ≥ 0,

we obtain that ij ∈ argmax fj+1 and as ij > ij+1 =
max argmax fj+1 and we reached the expected contradic-
tion. �

Lemma 6 The objective function F (X,R;w) decomposes
into contributions of negative and positive samples as fol-
lows:

F (X,R;w) =
1

|P| |N |
∑
x∈P

∑
y∈N

Rx,y(φ(x;w)− φ(y;w))

=
∑
x∈P

c(x)φ(x;w) +
∑
y∈N

c(y)φ(y;w),

where

c(x)=
|N |+ 2−2rank(x)

|P| |N |
, c(y)=

|P|+ 2−2rank(y)

|P| |N |
.

In particular, assuming already that {s+i } is sorted, and
that R is induced by a vector of interleaving ranks r, one



has

F (X,R;w) =

|P|∑
i=1

c+i s
+
i +

|N |∑
j=1

c−j s
∗
j ,

where

c+i =
|N |+ 2− 2r+i
|P| |N |

, c−j =
|P|+ 2− 2rj
|P| |N |

.

Here r+i stands for the interleaving rank of the i-th positive
sample, which can be computed as r+i = 1 + |{j : rj ≤ i}|.

Proof. This is straightforward to verify with a short compu-
tation. �

Proof of Observation 1: We slightly modify the decompo-
sition from Lemma 6 in order to incorporate the array {s+i }:

F (X,R;w)

=
∑
y∈N

(
c(y)φ(y;w) +

∑
x∈P

Rx,yφ(x;w)

)

=
1

|N | |P|

|N |∑
j=1

(|P|+2−2rj)s
∗
j +2

rj−1∑
i=1

s+i −
|P|∑
i=1

s+i

 .

This, in combination with (C1), defines the functions fj for
j = 1, . . . , |N |. As for the condition (C2), we have

fj(i+ 1)− fj(i) =
2(s+i − s∗j )

|N | |P|
+ δj(i+ 1)− δj(i),

where, let us be reminded, {s∗j} is the sorted array of scores
of negative samples. After writing analogous equality for
j + 1 and using that (C2) holds for functions δj , we can
check that the desired inequality

fj+1(i+ 1)− fj+1(i) ≥ fj(i+ 1)− fj(i)

follows from s∗j+1 ≤ s∗j .
Note that for computing the argmax fj(i) it is sufficient

to compute all discrete derivatives (i.e. all the differences
fj(i + 1) − fj(i)); the actual values of fj are in fact not
needed. For δj we know that one such evaluation is constant
time and for fj this is also the case since we assumed to
have access to s∗j . �

6. NDCG and Discount Functions
Chakrabarti et al. [1] use a slightly modified definition

of the discount D(·) as

D(i) =

{
1 1 ≤ i ≤ 2

1/ log2(i) i > 2
.

For the resulting NDCG loss, a greedy algorithm is proposed
for solving the loss augmented inference problem. This al-
gorithm achieves the runtime of O(|N | |P|+ |N | log |N |).
The authors also suggest to use a cut-off k in the defini-
tion of discount D(i), setting D(i) = 0 for i ≥ k. With
this simplification they achieved a reduced complexity of
O((|N |+ |P|) log(|P|+ |N |) + k2).

However, with the above definition of a discount, it is
possible to obtain a corner-case where their proof of cor-
rectness of the greedy algorithm is not valid (specifically,
there exists a counter-example for Fact 3.4 of [1]). For the
greedy algorithm to be correct, it turns out that the convex-
ity of D(i) is essential.

Remark 1 Observation 2 is not true for ∆NDCG with
function D(i) taken as

D(i) =

{
1 1 ≤ i ≤ 2

1/ log2(i) i > 2
.

Proof. Consider negative samples x1 and x2 and a positive
sample x3 with scores s1 = 3ε, s2 = ε, s3 = 5ε, where
ε > 0 is small.

Note that the NDCG loss of a ranking R reduces to
∆NDCG(R∗,R) = 1 − D(ind(x3)) where we used the
fact that D(1) = 1.

The decomposition ∆NDCG(R∗,R) = δ1(r1) + δ2(r2)
holds if we set

δ1(1) = δ2(1) = 0,

δ2(1) = D(2)−D(3),

δ1(2) = D(1)−D(2) = 0

and (possibly by looking at the proof of Observation 1)
we also find values of f1 and f2 as

f1(1) =
1

2
(s1 − s3) + δ1(1) = −ε < ε

=
1

2
(s3 − s1) + δ1(2) = f1(2)

f2(1) =
1

2
(s2 − s3) + δ2(1) = −2ε+D(2)−D(3) > 2ε

=
1

2
(s3 − s2) + δ2(2) = f2(2).

Hence opt1 = 2 > 1 = opt2, a contradiction.
�

7. Additional Experimental Results
For the action classification experiments on the PASCAL

VOC 2011 data set, we report the performance of models
trained by optimizing 0-1 loss as well as AP loss in Table 1.
Specifically, we report the AP on the test set for each of the
10 action classes. Similarly, we also report the performance



Object class 0-1 loss AP loss
Jumping 52.580 55.230
Phoning 32.090 32.630
Playing instrument 35.210 41.180
Reading 27.410 26.600
Riding bike 72.240 81.060
Running 73.090 76.850
Taking photo 21.880 25.980
Using computer 30.620 32.050
Walking 54.400 57.090
Riding horse 79.820 83.290

Table 1. Performance of classification models trained by optimiz-
ing 0-1 loss and AP loss, in terms of AP on the test set for the
different action classes of PASCAL VOC 2011 action dataset.

of models trained by optimizing 0-1 loss as well as NDCG
loss, in terms of NDCG on the test set in Table 2.

For our object detection experiments, we report the de-
tection AP in Table 3 for all the 20 object categories ob-
tained by models trained using 0-1 loss as well as AP loss.
For all object categories other than ’bottle’, AP loss based
training does better than that with 0-1 loss. For 15 of the 20
object categories, we get statistically significant improve-
ment with AP loss trained models compared to those trained
using 0-1 loss (using paired t-test with p-value less than
0.05). While optimizing AP loss for learning gives an over-
all improvement of 7.12% compared to when using 0-1 loss,
for 5 classes it gives an improvement of more than 10%.
The bottom 2 classes with the least improvement obtained
by AP loss based training, ’chair’ and ’bottle’ seem to be
difficult object categories to detect, with detectors register-
ing very low detection APs. In conjunction with the overall
superior performance of AP loss for learning model param-
eters, the efficient method proposed by this paper makes a
good case for optimizing AP loss rather than 0-1 loss for
tasks like object detection.

Object class 0-1 loss NDCG loss
Jumping 86.409 87.895
Phoning 73.134 76.733
Playing instrument 81.533 83.666
Reading 74.528 75.588
Riding bike 94.928 95.958
Running 93.766 93.776
Taking photo 74.058 76.701
Using computer 79.518 78.276
Walking 89.789 89.742
Riding horse 96.160 96.875

Table 2. Performance of classification models trained by optimiz-
ing 0-1 loss and NDCG loss, in terms of NDCG on the test set for the
different action classes of PASCAL VOC 2011 action dataset. We
conduct 5-fold cross-validation and report the mean NDCG over
the five validation sets.

Object category 0-1 loss AP loss
Aeroplane 46.60 48.18
Bicycle 48.53 61.45
Bird 33.31 36.73
Boat 15.23 19.66
Bottle 6.10 1.01
Bus 37.01 49.51
Car 61.28 66.78
Cat 38.12 40.77
Chair 2.71 3.23
Cow 21.06 38.52
Dining-table 14.20 39.53
Dog 33.55 36.25
Horse 46.14 53.86
Motorbike 29.97 34.81
Person 29.58 30.41
Potted-plant 21.27 23.03
Sheep 11.65 32.20
Sofa 36.66 42.03
Train 29.71 37.10
TV-monitor 27.31 37.26

Table 3. Performance of detection models trained by optimizing 0-
1 loss and AP loss, in terms of AP on the test set for the different
object categories of PASCAL VOC 2007 test set.
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