Learning Less is More — 6D Camera Localization via 3D Surface Regression
— Supplementary Materials —

Eric Brachmann and Carsten Rother
Visual Learning Lab
Heidelberg University (HCI/IWR)

http://vislearn.de

In this document, we list the main parameter settings for ex-
ecuting (Sec. 1.1) and learning (Sec. 1.2) our pipeline. The
information provided here is not necessary to understand
the main paper but can be useful for re-implementation. We
also include additional experimental analysis (Sec. 2) which
did not fit in the main paper due to space constraints.

1. Parameters

We use the same parameter settings for all scenes, indoor
and outdoor, expect for the scene coordinate initialization
parameter d. See details below.

1.1. Pipeline Parameters

Our FCN [3] network architecture (see also Fig. 1) takes
an image of 640 x 480 px as input. We re-scale larger im-
ages to 480 px height. Should an image be wider than 640
px after re-scaling, we crop it centrally to 640 px width.
After scene coordinate prediction, we sample n = 256 hy-
potheses using random 4-tuples of points and the algorithm
of [1]. We reject hypotheses where the reprojection error of
the corresponding 4-tuple is larger than the inlier threshold
7, and sample again. We set the inlier threshold 7 = 10px
for all scenes. For the soft inlier count (Eq. 5 of the main
paper) we use a softness factor = 0.5. We refine the se-
lected hypothesis until convergence or for a maximum of
100 iterations.

O ||
(o] 0 O||l©o N[N N
Sl ool == =SS
T — i o (o] wil|wn wn < || = F'|
™ 1 1 1 1 1 1 1 Y Y
M) Q) ol|® (ol 1 e e [A 4
c > > = >\ = > SIS S
o e c c c [c c c c o
o (o} [} ol © ofl ol © ollall ©
o (8] o o o o o O o
Legend: . RelU Activation
3 x 3 Convolution Sub-sampling
o EE—
conv3-64 64 Kernels with Stride 2

Figure 1. Network Architecture. Our FCN network architecture
is composed of 3 x 3 convolutions, ReLU activations and sub-
sampling via strided convolutions. The final fully connected layers
are implemented via 1 x 1 convolutions.

1.2. Learning Parameters

Our FCN [3] network architecture predicts 80 x 60 scene
coordinates for a 640 x 480 input image, i.e. it predicts one
scene coordinate for each 8 X8 px image block. To make full
use of the training data, we randomly shift training images
by a maximum of 8 px, horizontally and vertically. We re-
scale training images to 480 px height. Should an image
be wider than 640 px after re-scaling, we crop it to 640 px
width using random horizontal offsets.

We optimize using ADAM [2] and a batch size of 1 im-
age. The remaining learning hyper-parameters differ for the
three different training steps described in the main paper.
Scene Coordinate Initialization. We use an initial learn-
ing rate of 10~%, and train for 300k iterations. After 100k
iterations we halve the learning rate every 50k iterations.

When initializing the pipeline using our scene coordinate

heuristic instead of rendered scene coordinates, we reduce
training to 100k iterations and utilize only 5% of the train-
ing data. This is to avoid overfitting to the heuristic. For
the heuristic, we use a constant depth prior of d = 3m for
indoor scenes, and d = 10m for outdoor scenes.
Optimization of Reprojection Error. We use an initial
learning rate of 10~%, and train for 300k iterations. After
100k iterations we halve the learning rate every 50k itera-
tions. We clamp gradients to +0.5 before passing them to
the network.
End-to-End Optimization. We use an initial learning rate
of 1076, and train for 50k iterations. We halve the learn-
ing rate after 25k iterations. We clamp gradients to £103
before passing them to the network.

For our entropy control schema, we set scale parameter
a = 0.1, initially. We optimize using ADAM [2] and a
learning rate of 103 for a target entropy of S* = 6 bit.

2. Additional Analysis

Detailed Quantitative Results. See Table 1 (left) for the
accuracy of our pipeline for each scene of the 7Scenes
dataset [4], when trained with and without a 3D scene

Table 1. Detailed Results for 7Scenes. We report accuracy per scene as percentage of estimated poses with an error below Scm and 5°.
“Complete” denotes the accuracy on all test frames of the dataset combined. Left: Results of training the pipeline with and without a 3D
model. Numbers are given after end-to-end training. Right: Effect of varying the output resolution of scene coordinate regression (default:
80x60). Numbers are given for training with a 3D model and after end-to-end training.

Training Scene Coordinate Output Resolution
w/ 3D Model w/o 3D Model || 20x15 20x30 40x30 40x60 80x60 320x240
Chess 97.1% 93.8% 96.5% 97.1% 973% 974% 97.1% 97.6%
Fire 89.6% 75.6% 86.0% 87.8% 89.5% 904% 89.6% 91.9%
Heads 92.4% 18.4% 88.6% 899% 913% 921% 924% 93.7%
Office 86.6% 75.4% 833% 852% 862% 86.1% 86.6% 87.3%
Pumpkin 59.0% 55.9% 582% 60.5% 613% 613% 59.0% 61.6%
Kitchen 66.6% 50.7% 632% 643% 647% 647% 66.6% 65.7%
Stairs 29.3% 2.0% 19.7% 22.5% 23.7% 25.1% 293% 28.7%
Complete 76.1% 60.4% 728% 744% 152% 115.5% 761% 76.6%

model. Table 2 shows the corresponding results for the
12Scenes dataset [5].

Varying Output Resolution. We analyze the impact of the
FCN output resolution, i.e. the number of scene coordinates
predicted, on pose estimation accuracy. The default output
resolution of our FCN architecture is 80 x 60. We simu-
late smaller output resolutions by sub-sampling correspon-
dences during test time. We simulate higher output resolu-
tions by executing the FCN multiple times with shifted in-
puts. See results in Table 1 (right) for the 7Scenes dataset.
We observe a graceful decrease in accuracy with smaller
output resolutions. Therefore, the runtime of the pipeline
could potentially be optimized by predicting less scene co-
ordinates while maintaining high accuracy. On the other
hand, we observe only a small increase in accuracy with
higher output resolutions, i.e. when the FCN predicts more
scene coordinates. Therefore, we do not expect an advan-
tage in using up-sampling layers to produce full resolution
outputs.

Scene Coordinate Initialization. When training our
pipeline without a 3D scene model, we initialize scene coor-
dinates to have a constant distance d from the camera plane,
see Sec. 2.4 of the main paper. We set this value to d = 3m
for indoor scenes and d = 10m for outdoor scenes, accord-
ing to the coarse range of depth values we expect for these
settings. Without this initialization, scene coordinate pre-
dictions might lie behind the camera or near the projection
center in the beginning of training, resulting in unstable gra-
dients and very low test accuracy. We found the aforemen-
tioned values for d to generalize well on the diverse set of
scenes we experimented on. However, setting d to a value
that is far off the actual range of distances can harm accu-
racy. For example, when setting d = 10m for the 7Scenes
dataset, test accuracy decreases to 49.3%.

Learning Scene Geometry. We visualize the approximate
scene geometry discovered by our system when trained
without a 3D model in Fig. 2. Although our heuristic initial-

Table 2. Detailed Results for 12Scenes. We report accuracy per
scene as percentage of estimated poses with an error below Scm
and 5°. “Complete” denotes the accuracy on all test frames of
the dataset combined. Numbers are given for training the pipeline
with and without a 3D model, both after end-to-end training.

Training
w/ 3D Model w/o 3D Model

Apt. 1 K}@hen 100% 7.6%
Living 100% 92.0%

Bed 99.5% 66.1%

Apt. 2 Kitchen 99.5% 87.6%
Living 100% 89.9%

Luke 95.5% 67.3%

Gates 362 100% 96.3%

Gates 381 96.8% 27.8%

Office 11 1 junge 95.1% 94.8%
Manolis 96.4% 72.2%

Floor 5a 83.7% 11.0%

Office 2 | Eygor 5t 95.0% 83.2%
Complete 96.4% 60.9%

ization ignores scene geometry entirely, the system recovers
depth information through optimization of reprojection er-
TOors.

Run Time. The total processing time of our implemen-
tation is ~200ms per image on a Tesla K80 GPU and an
Intel Xeon ES5-E5-2680 v3 CPU (6 cores). Time is spent
mainly for scene coordinate regression, including the over-
head of transferring data between the pose estimation front-
end (C++) and the deep learning back-end (LUA/Torch), as
well as transferring data between main memory and GPU
memory. Pose optimization with DSAC takes ~10ms on the
aforementioned CPU. Training the pipeline takes 1-2 days
per training stage and scene on a single Tesla K80 GPU.

Ground Truth Learned Learned Learned Geometry Ground Truth
a) Input RGB b) Scene Coordinates c) w/ 3D Model d) w/o 3D Model e) (w/o 3D Model) f) Geometry
4 n

P -

7Scenes Chess

L Sy

7Scenes Office

Cam. Old Hospital

Figure 2. Learning Scene Geometry. We show scene coordinate predictions for test images after end-to-end optimization. For comparison,
we calculate ground truth scene coordinates (b) using measured depth (7Scenes) or the 3D scene model (Cambridge Hospital). When
trained using a 3D model (c), our method learns the scene geometry accurately. When trained without a 3D model (d), our method
discovers an approximate geometry, automatically. The last two columns show a 3D mesh representation of column (d) and (b).

References

[1] X.-S. Gao, X.-R. Hou, J. Tang, and H.-F. Cheng. Complete
solution classification for the perspective-three-point problem.
TPAMI, 2003. 1

[2] D.P. Kingma and J. Ba. Adam: A method for stochastic opti-
mization. CoRR, 2014. 1

[3] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional
networks for semantic segmentation. In CVPR, 2015. 1

[4] J. Shotton, B. Glocker, C. Zach, S. Izadi, A. Criminisi, and
A. Fitzgibbon. Scene coordinate regression forests for camera
relocalization in RGB-D images. In CVPR, 2013. 1

[5] J. Valentin, A. Dai, M. NieBner, P. Kohli, P. Torr, S. Izadi, and
C. Keskin. Learning to navigate the energy landscape. CoRR,
2016. 2

