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1. Overview
We provide additional materials for better understanding

of our proposed networks. First, we provide the detailed ar-
chitectures from the variants of DBPN. Second, we present
additional analysis of DBPN. Last, we provide additional
qualitative results from our networks compare to the state-
of-the-arts methods.

2. Implementation Details of Networks Archi-
tecture

There are six variants of DBPN which is shown in the pa-
per: DBPN-SS, DBPN-S, DBPN-M, DBPN-L, D-DBPN-L,
and D-DBPN. The detailed architectures of those networks
are shown in Table 1.

3. Additional Analysis
3.1. Sanity Check

We compare D-DBPN, VDSR [4] and EDSR [6]. Larger
dataset is used for fair comparison which is DIV2K [8]. In
Table 2, we report results of training with DIV2K, with
total number 800 training images, on the x2, x4, and x8
super-resolution task. Here, we use our PyTorch imple-
mentation which is also publicly available in the internet.
For reference, we also include original VDSR trained on
BSDS200 [1] + T91 [9] dataset.

From Table 2, it’s evident that our network has overall
better performance than either version of VDSR.

3.2. Error Feedback

As stated in our manuscript, error feedback (EF) is used
to guide the reconstruction in the early layer. Here, we
analyze how error feedback can help for better reconstruc-
tion. For the scenario without EF, we replace up- and down-
projection unit with single up- and down-sampling (decon-
volution and convolution) layer.

Figure 1. Qualitative comparisons of DBPN-S with EF and with-
out EF on 4× enlargement.

We show PSNR of DBPN-S with EF and without EF
in Table 3. The result with EF has 0.53 dB and 0.26 dB
better than without EF on Set5 and Set14, respectively.
In Fig. 1, we visually show how error feedback can con-
struct better and sharper HR image especially in the white
stripe pattern of the wing.

The performance of DBPS-S without EF is interestingly
0.57 dB and 0.35 dB better than SRCNN [2], FSRCNN [3],
respectively, on Set5. These results show the effective-
ness of our mutual-connected up- and downsampling layers
which can demonstrate the LR-HR mutual dependency by
mapping LR features to HR space, then project it back to
the LR space.

3.3. Convergence Curve

In Fig. 2 and Fig. 3, we show the convergence curve of
4× and 8× enlargement from each proposed network in the
manuscript. Our proposed networks have fast convergence
speed especially for D-DBPN where the results of 50k iter-
ation can outperform the state-of-the-art methods except for
EDSR.

3.4. Filter Size

We analyze the size of filters which is used in the back-
projection stage. In the manuscript, we stated that the
choice of filter size in the back-projection stage is based on
the preliminary results. For the 4× enlargement, we show
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Table 1. Network Architecture of DBPN variants. ”Feat0” and ”Feat1” refer to first and second convolutional layer in the initial feature
extraction stages. Note: conv(f, n, st, pd) where f is filter size, n is number of filters, st is striding, and pd is padding

Scale DBPN-SS DBPN-S DBPN-M DBPN-L D-DBPN-L D-DBPN

Input/Output Luminance Luminance Luminance Luminance Luminance RGB

Feat0 conv(3,64,1,1) conv(3,128,1,1) conv(3,128,1,1) conv(3,128,1,1) conv(3,128,1,1) conv(3,256,1,1)

Feat1 conv(1,18,1,0) conv(1,32,1,0) conv(1,32,1,0) conv(1,32,1,0) conv(1,32,1,0) conv(1,64,1,0)

Reconstruction conv(1,1,1,0) conv(1,1,1,0) conv(1,1,1,0) conv(1,1,1,0) conv(1,1,1,0) conv(3,3,1,1)

2× conv(6,18,2,2) conv(6,32,2,2) conv(6,32,2,2) conv(6,32,2,2) conv(6,32,2,2) conv(6,64,2,2)

BP stages 4× conv(8,18,4,2) conv(8,32,4,2) conv(8,32,4,2) conv(8,32,4,2) conv(8,32,4,2) conv(8,64,4,2)

8× conv(12,18,8,2) conv(12,32,8,2) conv(12,32,8,2) conv(12,32,8,2) conv(12,32,8,2) conv(12,64,8,2)

2× 106 337 779 1221 1230 5819

Parameters (k) 4× 188 595 1381 2168 2176 10291

8× 421 1332 3101 4871 4879 23071

Depth 12 12 24 36 40 52

No. of stage (T ) 2 2 4 6 6 7

Dense connection No No No No Yes Yes

Table 2. Quantitative evaluation of state-of-the-art SR algorithms on DIV2K data sets: average PSNR/SSIM for scale factors 2×, 4× and
8×. Red indicates the best and blue indicates the second best performance.

Set5 Set14 BSDS100 Urban100 Manga109

Algorithm Scale PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

VDSR [4] 2 37.53 0.958 32.97 0.913 31.90 0.896 30.77 0.914 37.16 0.974
VDSR-DIV2K 2 37.55 0.958 32.98 0.913 31.93 0.896 30.78 0.915 37.20 0.976
EDSR [6] 2 38.11 0.960 33.92 0.919 32.32 0.901 32.93 0.935 39.10 0.977
D-DBPN 2 38.05 0.960 33.79 0.919 32.25 0.900 32.51 0.932 38.81 0.976

VDSR [4] 4 31.35 0.882 28.03 0.770 27.29 0.726 25.18 0.753 28.82 0.886
VDSR-DIV2K 4 31.37 0.882 28.04 0.771 27.31 0.727 25.25 0.754 28.90 0.888
EDSR [6] 4 32.46 0.897 28.80 0.788 27.71 0.742 26.64 0.803 31.02 0.915
D-DBPN 4 32.40 0.897 28.75 0.785 27.67 0.738 26.38 0.793 30.89 0.913

VDSR [4] 8 25.72 0.711 24.21 0.609 24.37 0.576 21.54 0.560 22.83 0.707
VDSR-DIV2K 8 25.99 0.729 24.28 0.614 24.46 0.579 21.77 0.573 23.21 0.721
EDSR [6] 8 26.97 0.775 24.94 0.640 24.80 0.596 22.47 0.620 24.58 0.778
D-DBPN 8 27.25 0.785 25.14 0.649 24.91 0.602 22.72 0.630 25.14 0.798

Table 3. Analysis of EF using DBPN-S on 4× enlargement. Red
indicates the best performance.

Set5 Set14
SRCNN [2] 30.49 27.61

FSRCNN [3] 30.71 27.70

Without EF 31.06 27.95

With EF 31.59 28.21

that filter 8×8 is 0.08 dB and 0.09 dB better than filter 6×6
and 10×10, respectively, as shown in Table 4.

Table 4. Analysis of filter size in the back-projection stages on 4×
enlargement from D-DBPN. Red indicates the best performance.

Filter size Striding Padding Set5 Set14
6 4 1 32.39 28.78

8 4 2 32.47 28.82

10 4 3 32.38 28.79

3.5. Luminance vs RGB

In the final network (D-DBPN), we change input/output
from luminance to RGB color channels. There is no sig-
nificant improvement in the quality of the result as shown
in Table 5. However, it might reduce the complexity and
simplify the implementation by avoiding the use of another
interpolation techniques, such as Bicubic, to process other
channels.

Table 5. Analysis of input/output color channel using DBPN-L.
Red indicates the best performance.

Set5 Set14
RGB 31.88 28.47

Luminance 31.86 28.47

3.6. Performance gain on dense connections

Table 6 gives detailed information about performance
gains derived from dense connections. We compare DBPN-
L to the same architecture augmented with dense connec-



Figure 2. Convergence curve for 4× enlargement on Set5.

Figure 3. Convergence curve for 8× enlargement on Set5.

tions, D-DBPN-L. The results demonstrate that D-DBPN-L
achieves superior performance on all test sets.

3.7. Runtime Evaluation

We present the runtime comparisons between our
networks and 3 state-of-the-art networks: VDSR [4],
DRRN [7], and EDSR [6]. The comparison must be done
in fair settings. Therefore, we choose only three methods

which have the same in nature with our implementation us-
ing Caffe. The runtime is calculated using python function
timeit which encapsulating forward function in Caffe.
For EDSR, we use original author code based on Torch and
use timer function to obtain the runtime.

We evaluate each network using Nvidia TITAN X GPU
(12G Memory). The input image size is 64× 64, then up-
scaled into 128× 128 (2×), 256× 256 (4×), and 512× 512



Table 6. Comparison of the DBPN-L and D-DBPN-L on 4× en-
largement. (* indicates that the input is divided into four parts and
calculated separately due to computation limitation of Caffe)

DBPN-L D-DBPN-L

Algorithm PSNR SSIM PSNR SSIM

Set5 31.86 0.891 31.99 0.893
Set14 28.47 0.777 28.52 0.778
BSDS100 27.50 0.732 27.53 0.733
Urban100∗ 26.65 0.780 26.76 0.783

(8×). The results are the average of 10 times trials.
Table 7 shows the runtime comparisons on 2×, 4×, and

8× enlargement. It shows that our SS and S networks ob-
tain the best and second best performance on 4× and 8×
enlargement. On 2× enlargement, we did not construct
the variants of our proposed network except for D-DBPN.
Therefore, we cannot produce the runtime for SS, S, M,
and L networks. Compare to EDSR, our final network (D-
DBPN) show its effectiveness by having faster runtime with
comparable quality on 2× and 4× enlargement. On 8× en-
largement, the gap is bigger. It shows that D-DBPN has
better results with lower runtime than EDSR.

Noted that input for VDSR and DRRN is only luminance
channel and need preprocessing to create middle-resolution
image. So that, the runtime should be added by additional
computation of interpolation computation on preprocessing.

Table 7. Runtime evaluation with input size 64×64. Red indi-
cates the best and blue indicates the second best performance, *
indicates the calculation using function timer in Torch, and N.A.
indicates that the algorithm runs out of GPU memory.

2× 4× 8×
(128×128) (256×256) (512×512)

VDSR [4] 0.02223 0.03225 0.06856

DRRN [7] 0.25413 0.32893 N.A.

*EDSR [6] 0.8579 1.2458 1.1477

DBPN-SS - 0.01672 0.02692

DBPN-S - 0.02073 0.03812

DBPN-M - 0.04511 0.08106

DBPN-L - 0.06971 0.12635

D-DBPN 0.15331 0.19396 0.31851

4. Additional Qualitative Results
In Fig. 4-16, we provide additional results for 8× en-

largement to clearly show the effectiveness of our pro-
posed network. The comparisons focus to compare be-
tween top-3 current state-of-the-art networks which are
LapSRN [5], EDSR [6], and D-DBPN. The complete re-

sults on all datasets will be published in our website.
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Figure 4. Visual comparison for 8× enlargement. D-DBPN is able to separate clearly between the hiragana word and outer stripe pattern.

Figure 5. Visual comparison for 8× enlargement. All networks fail to keep the shape consistency from the HR image. However, the correct
number of holes in the image is only achieved by D-DBPN.

Figure 6. Visual comparison for 8× enlargement. D-DBPN is able to construct shaper eyelashes close to the ground truth.

Figure 7. Visual comparison for 8× enlargement. D-DBPN is able to construct sharper edges. However, it also creates soft black stripes in
the middle part of the wall.



Figure 8. Visual comparison for 8× enlargement. D-DBPN is able to construct sharper edges from the windows.

Figure 9. Visual comparison for 8× enlargement. D-DBPN is able to construct more detailed patterns compare to LapSRN and EDSR.

Figure 10. Visual comparison for 8× enlargement. D-DBPN is able to preserve the stripe pattern in the wall.

Figure 11. Visual comparison for 8× enlargement. D-DBPN is able to construct the white stripes better than LapSRN and EDSR.



Figure 12. Visual comparison for 8× enlargement. D-DBPN is able to construct sharper the blue bars pattern.

Figure 13. Visual comparison for 8× enlargement. D-DBPN is able to construct sharper pattern of ”2” than LapSRN and EDSR.

Figure 14. Visual comparison for 8× enlargement. D-DBPN is able to construct the characters sharper than LapSRN and EDSR.

Figure 15. Visual comparison for 8× enlargement. D-DBPN is able to construct the bars in the window.



Figure 16. Visual comparison for 8× enlargement. D-DBPN is able to preserve the sketch pattern (light black stripes) in the image better
than LapSRN and EDSR.


