
Appendix
A. Training objective as an upper bound

Claim 1 Let Pd and Pf be two distributions. Suppose that P̂d and P̂f are empirical measures of Pd and Pf , induced by
random sets (of n i.i.d samples) D and F . Then

W̃ 2
2 (Pd,Pf ) ≤ 16E[W̃2(P̂d, P̂f )]. (16)

Proof: Using the triangle inequality for the sliced Wasserstein distance, we have

W̃ 2
2 (Pd,Pf ) ≤ 2W̃ 2

2 (Pd, P̂d) + 2W̃ 2
2 (Pf , P̂d). (17)

Using it again, we get
W̃ 2
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2 (Pf , P̂f ) + 4W̃ 2
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In the following we find upper bounds for W̃ 2
2 (Pf , P̂f ) in terms of W̃ 2

2 (P̂d, P̂f ). In order to do this, we must deconstruct
the sliced Wasserstein distance. By definition, we have

W̃ 2
2 (Pf , P̂f ) =

�

ω∈Ω

W 2
2 (Pω

f , P̂ω
f )dω. (19)

Consider any one projection ω. We have a 1-d distribution Pω
f , and its empirical measure P̂ω

f . Using Theorem 4.3 in [5]:
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f )], (20)

where P̂�ω
f is an independent copy of P̂ω

f .
To bound E[W 2

2 (P̂ω
f , P̂�ω

f )] in Eq. (20), we first see how the expectsed Wasserstein distance between two 1-d empirical
measures P̂ω

d and P̂ω
f can be written in terms of the sets of samples Dω and Fω that they represent (i.e. are induced by). Note

that Dω and Fω are obtained by simply projecting a the sets D and F onto the direction ω. If Dω
σD(i) and Fω

σF (i) denote the
i-th smallest sample in Dω and Fω ,
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Dω
σD(i) and Fω

σF (i) are infact the n sample order statistics of Pω
d and Pω

f . For P̂ω
f and P̂�ω

f , we can write this as
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The RHS of Eq. (21) can be decomposed as
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hence
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Combining this result with Eq. (21) and Eq. (22) yields

E[W 2
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2 (P̂ω
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f )],



which, when combined with Eq. (20), results in

E[W 2
2 (Pω

f , P̂ω
f )] ≤ 2E[W 2

2 (P̂ω
d , P̂ω

f )]. (23)

Applying the expectation operator on Eq. (19) and using Eq. (23),

E[W̃ 2
2 (Pf , P̂f )] ≤ 2
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= 2E[W̃ 2
2 (P̂d, P̂f )]. (24)

The same bound holds for E[W̃ 2
2 (Pd, P̂d)].

Substituting from Eq. (24) in Eq. (18) and applying the expectation operator, we get

W̃ 2
2 (Pd,Pf ) ≤ 16E[W̃2(P̂d, P̂f )], (25)

which completes the proof. �

B. Bounds for generated distribution

Corollary 1 Let Pd and Pf be two distributions. Suppose that P̂d and P̂f are (n-sample) empirical measures of Pd and Pf ,
and let P̂�

d be an independent copy of P̂d. For P∗
f defined by P∗

f = argminPf
E[W̃ 2

2 (P̂d, P̂f )], the following holds:

W̃2(Pd,P∗
f ) ≤ 14E[W̃2(P̂d, P̂�

d)]. (26)

Proof: This follows easily from Claim 1. Using Eq. (20), we can show that

E[W̃ 2
2 (Pd, P̂d)] ≤ E[W̃ 2

2 (P̂d, P̂�
d)], (27)

and therefore we can rewrite (18) as:

W̃2(Pd,Pf ) ≤ 2E[W̃ 2
2 (P̂d, P̂�

d)] + 12E[W̃2(P̂d, P̂f )]. (28)

Since P∗
f minimizes E[W̃ 2

2 (P̂d, P̂f )] over all Pf ,

E[W̃2(P̂d, P̂∗
f )] ≤ E[W̃2(P̂d, P̂�

d)]. (29)

Therefore,

W̃2(Pd,P∗
f ) ≤ 14E[W̃2(P̂d, P̂�

d)]. (30)
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C. Discriminator update frequency experiments

We tested different discriminator update schemes (i.e., number of generator updates per discriminator updates, and number
of iterations of discriminator updates). In Tab. 4 we show samples after 40 epochs of training on the LSUN dataset with these
different schemes for two discriminator configurations. The generator architecture for both is the DCGAN.



Discriminator:DCGAN DCGAN with 64 filters in each layer
(a) 1 D update per G update, 1 iteration of training per D update

(b) 1 D update per G update, 5 iterations of training per D update

(c) 1 D update per 5 G updates, 1 iteration of training per D update

(d) 1 D update per 5 G updates, 5 iterations of training per D update

Table 4. The SWG is robust to different discriminator update schemes. Tested for two discriminator architectures (columns). Sample size
= 64, learning rate = 0.0005, Adam optimizer, 40 epochs.



D. Network architectures for experiments on MNIST

Here we summarize the different network architectures used for experiments with the MNIST dataset presented in Sec. 4.2.

Generator (Fully Connected) Generator (Conv & Deconv) Discriminator

output: 784-d sample output: 784-d sample output: scalar
fc-784, sigmoid conv2d-1-3-1, sigmoid 2× fc-256, relu
7× fc-512, relu deconv2d-16-3-2, (bn), relu input: 784-d sample

input: 32-d random noise conv2d-32-3-1, (bn), relu
deconv2d-32-3-2, (bn), relu
conv2d-64-3-1, (bn), relu

deconv2d-64-3-2, (bn), relu
fc-1024

input: 32-d random noise
Table 5. Generator and discriminator for MNIST. “fc-n” means applying a fully connected layer with n output units. Both “conv2d-c-k-s”
and “deconv2d-c-k-s” mean applying c convolutional filters of size k by k with stride s by s. “bn” means batch normalization.


