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1. Network Architectures
Here, we provide detailed descriptions of the convo-

lutional neural network (CNN) architectures used in our
method.

CiSjDk denotes a convolution layer with i 3x3 filters, a
spatial stride of j in each dimension, and a dilation rate of
k. Additionally, E denotes an exponential linear unit activa-
tion function [1] and I denotes instance normalization [2].
Finally, R denotes a residual connection where the current
tensor is added to the tensor output from the previous in-
stance normalization layer.

For our light field dataset experiments, the monocular
depth estimation CNN fθd

(·) contains 12 convolutional lay-
ers structured as:

C8S1D1-E-I-C32S1D1-E-I-C64S1D1-E-I-

C128S1D1-E-I-C128S1D2-E-I-R-C128S1D4-E-I-R-

C128S1D8-E-I-R-C128S1D16-E-I-R-C128S1D32-E-I-R-

C64S1D1-E-I-C32S1D1-E-I-C1S1D1. (1)

For our SLR dataset experiments, the monocular depth esti-
mation CNN fθd

(·) contains 12 convolutional layers struc-
tured as:

C4S2D1-E-I-C8S2D1-E-I-C16S1D1-E-I-

C64S1D1-E-I-C64S1D2-E-I-R-C64S1D4-E-I-R-

C64S1D8-E-I-R-C64S1D16-E-I-R-C64S1D32-E-I-R-

C64S1D1-E-I-R-C32S1D1-E-I-C1S1D1. (2)

When using our light field aperture rendering function,
the output of the monocular depth estimation network is
passed through a scaled tanh(·) activation function to re-
strict the disparities to [−10, 10] pixels between adjacent
views. When using our compositional aperture rendering
function, the number of filters in the last convolutional layer
is modified to be the number of discrete depth planes n.

For all experiments using the light field aperture render-
ing function, the depth expansion CNN gθe(·) contains 3
convolutional layers structured as:

CmS1D1-E-I-CmS1D1-E-I-CnS1D1 (3)

*Work done while interning at Google Research.

where m is the total number of views in the light field.

2. Additional Results
Below, we display additional qualitative results for both

our light field and DSLR experiments.
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Figure 1. Additional qualitative comparison of monocular depth estimation and synthetic defocus results on images from the test set of our
light field experiments. Our aperture supervision models are able to estimate high-quality detailed depths and render convincing shallow-
depth-of-field images. The depths estimated by a network trained by view synthesis supervision are reasonable, but typically have artifacts
around occlusion edges, causing false edges and artifacts in their rendered shallow depth-of-field images. We recommend that readers view
these figures digitally and zoom in to see fine details and differences between the various methods.



Figure 2. Additional qualitative comparison of monocular depth estimation and synthetic defocus results on images from the test set of our
light field experiments. Our aperture supervision models are able to estimate high-quality detailed depths and render convincing shallow-
depth-of-field images. The depths estimated by a network trained by view synthesis supervision are reasonable, but typically have artifacts
around occlusion edges, causing false edges and artifacts in their rendered shallow depth-of-field images. We recommend that readers view
these figures digitally and zoom in to see fine details and differences between the various methods.



Figure 3. Additional qualitative comparison of monocular depth estimation results on images from the test set of our DSLR dataset experi-
ments. Our aperture supervision model is able to estimate more detailed depth maps than the direct depth supervision baseline.


