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1. Retinal Transform
Our implementation follows the same steps as outlined in [3] with few minor changes. In particular, we refitted the

generalized Gamma distribution to better simulate rod vision and reimplemented the interpolation function in CUDA.
As with most foveation algorithms, our approach starts by building a Gaussian pyramid and then for each pixel the

appropriate level of the pyramid is sampled depending on how far the pixel is from the current gaze point. The level of the
pyramid to sample from is computed as follows

Lx,y =
π

180 (atan((Drad + dotpitch) 1
Dview

)− atan((Drad − dotpitch) 1
Dview

))

(ε2(α ∗ (EC + ε2))). ∗ log( 1
CT0

)
(1)

where Drad is the radial distance between the point (x, y) and the current gaze point, EC is the eccentricity from the fovea
center for point (x, y) in degrees, dotpitch is the size of the pixel of the monitor in meters and Dview refers to the viewing
distance. α, ε2 and CT0 are constants from [2]. In this equation the numerator represents the maximum spatial frequency that
can be represented at the given distance from the current gaze point and the denominator is the maximum spatial resolution
that can be resolved by the eye.

However, [2] only considered cone vision. For more biologically accurate results we augment it with rod vision following
[3] using the generalized Gamma distribution as proposed in [4]. Since in [4] cell counts were used to fit a distribution
function, we adjust the parameters to convert it to the units that we use, namely the levels of pyramid. Therefore, we set the
parameters of the generalized Gamma distribution as follows: α = 2.46, β = 121.8, γ = 0.77, σ = 861.27 and µ = −1. To
find corresponding levels of the pyramid for each pixel we compute the generalized gamma distribution for EC and plug it
into the equation (1) as the denominator.

Finally we compute the foveated image using a bi-cubic interpolation routine for 3D volumes to sample the required level
of the pyramid for each pixel. Our code is a CUDA reimplementation of the ba interp3 function 1.

Note that we compute cone distribution for each color channel separately, but rod distribution only for the intensity channel
(the image is first converted to YCrCb color space), since rods do not contribute to color vision. Rod and cone functions
contribute 40% and 60%, respectively, to the final transformed image.

The viewing conditions in all our experiments match the experimental conditions reported for the CAT2000 dataset [1],
namely all stimuli span 45 degrees and the viewing distance is set to 1.06 m.

2. Saccade amplitudes
Figure 1 shows plots of the fixation amplitudes that demonstrate the effect of using different saliency algorithms in the

periphery and blending strategies. Both SAR and WCA blending strategies (Figure 1a and Figure 1c) lead to a pronounced
spike in the distribution, which approximately corresponds to the diameter of the central field. MCA, on the other hand,
produces a more even distribution of the amplitudes (Figure 1b). Figure 2 shows fixation amplitudes for all tested bottom-up
saliency algorithms. Note that all of them greatly underestimate the number of short saccades (< 100 px) and generally have
a much flatter fall off than the human ground truth distribution.

1https://www.mathworks.com/matlabcentral/fileexchange/21702-3d-volume-interpolation-with-ba-interp3-
-fast-interp3-replacement

1

https://www.mathworks.com/matlabcentral/fileexchange/21702-3d-volume-interpolation-with-ba-interp3--fast-interp3-replacement
https://www.mathworks.com/matlabcentral/fileexchange/21702-3d-volume-interpolation-with-ba-interp3--fast-interp3-replacement
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(b) MCA
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(c) WCA

Figure 1: Plots of fixation amplitudes demonstrating the effects of different strategies for combining peripheral and cen-
tral fields of STAR-FC (SAR, MCA and WCA), and different bottom-up saliency algorithms in the peripheral field (AIM,
VOCUS and BMS).
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Figure 2: Fixation amplitudes for 12 state-of-the-art bottom-up saliency algorithms.

3. 2D Histograms of Fixations
Figure 3 shows 2D histograms of fixations for all saliency algorithms with MSE scores.
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Figure 3: 2D histograms of fixation locations over the CAT2000 dataset for all tested bottom-up saliency algorithms. Mean-
squared-error (MSE) scores between model and human distributions are shown in parentheses under each model name. The
algorithms are sorted by MSE in ascending order, starting with STAR-FC (AIM with 21infomax950 basis and MCA blending
strategy), which is an order of magnitude closer to the human distribution than the best bottom-up algorithm (FES).

4. Trajectory Scores
Figure 4 and Figure 5 show trajectory scores for full sequence length for various STAR-FC variants and all tested saliencey

algorithms. Note that as the sequences get longer they begin to diverge and the trajectory scores saturate.
Figure 6 shows the AUC score for the first 5 fixations for all saliency algorithms and our best performing STAR-FC model

(using AIM with 21infomax950 basis and MCA blending strategy) split by category. For human fixations we report the AUC
for the average pairwise distance. As we noted in the paper, it correlates well with inter-observer consistency for different
categories of images (e.g. high IO consistency for Sketch translates to a smaller average pairwise distances across all metrics,
whereas the opposite is true for the Jumbled category).

Note that saliency algorithms tend to follow the same trends as human inter-observer scores. In general, categories
with high IO consistency such as Affective or Sketch are not as challenging as categories with lower human to human
fixation consistency. One major exception is the Low Resolution category, which has a high degree of IO consistency but is
nevertheless extremely challenging for all saliency algorithms. This calls for more investigation of the effects that blurring
has on the quality of saliency prediction.
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(c) Frechet distance

Figure 4: A comparison of fixation prediction scores over the full length of the fixation sequences for variants of STAR-FC.
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Figure 5: A comparison of fixation prediction scores over the full length of the fixation sequences for all tested saliency
algorithms and the best performing STAR-FC model (using AIM with 21infomax950 basis in the peripheral field and MCA
blending strategy).
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Figure 6: Fixation prediction scores for all tested saliency algorithms and the best performing STAR-FC model (using AIM
with 21infomax950 basis in the peripheral field and MCA blending strategy). For each category we measured the mean
distance from the human fixation and plotted the area-under-the-curve (AUC) score for the first 5 fixations.



5. Examples of Predicted Fixation Sequences
Below we show some examples of predicted fixations. For clarity we only compare STAR-FC and one saliency algorithm

at a time and show only the closest human sequences to each of the predicted sequences. Furthermore, we show results
only for the first 3 and 5 fixations. We selected FES as the top performing contrast-based algorithm and SALICON as the
top performing CNN-based algorithm for comparison with our best performing STAR-FC model (21infomax950 bases and
MCA blending strategy).

In Figure 7 examples from categories with high IO consistency (Affective and Low Resolution) are shown. Figure 8 shows
examples from the Satelite category which has low IO consistency.

Figure 7: Examples of fixations predicted by FES (left column) and SALICON (right column) compared to the proposed
STAR-FC model (with AIM 21infomax basis and MCA blending strategy). Blue lines represent the closest human fixations
to each of the compared algorithms and numbers in parentheses indicate the corresponding Euclidean distance.



Figure 8: Examples of fixations predicted by FES (left column) and SALICON (right column) compared to the proposed
STAR-FC model (with AIM 21infomax basis and MCA blending strategy). Blue lines represent the closest human fixations
to each of the compared algorithms and numbers in parentheses indicate the corresponding Euclidean distance.
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