
Pixels, voxels, and views: A study of shape representations
for single view 3D object shape prediction

— Supplementary Material

1 RGB-based shape prediction

1.1 Synthetic training examples

Figure 1: Sample RGB training images generated using RenderForCNN. Our dataset has 2.4M renderings of 34,000 3D CAD models from 12 object
categories. In the RGB multi-surface experiment, each example has six output ground truth depth images rendered on the faces of a cube: front, back,
left, right, top, bottom.

Figure 2: Viewer-centered (top) and object-centered (bottom) output ground truth depth images for the corresponding input images in Figure 1. Only
showing first view in each example.

1.2 Viewer-centered and object-centered coordinates
Does object-centered representation make shape prediction more of a categorization problem? Qualitative results support our initial hypothesis that
object-centered models tend to correspond more directly to category recognition. Object-centered model often predicts a shape that looks good but
is in an entirely different object category than the input image (Section 1.2.1). The viewer-centered model tends not to make these kinds of mistakes
and, instead, errors tend to be overly simplified shapes or incorrect poses (Section 1.2.3).
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1.2.1 Object-centered failure examples
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1.2.2 Viewer-centered failure examples
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1.2.3 Successful examples

This section shows selected examples that are successful in both coordinate systems.

Input Viewer-centered Pred. Object-centered Pred.
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Input Viewer-centered Pred. Object-centered Pred.
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2 Depth-based shape prediction

2.1 Multi-surface vs. voxel shape representations
Categories in the SHREC’12 dataset:

• Train+val: bed, biplane, bookset, bookshelf, cellphone, city, classicpiano, computer, computerkeyboard, desklamp, door, face, glasses, guitar,
handgun, helicopter, militaryvehicle, monitor, monoplane, mug, plier, quadruped, rectangletable, roundtable, singlehouse, skyscraper, sofa,
spoon, tree, violin, bicycle, biped, fish, floorlamp, flyinginsect, bird, bottle, chess, deskphone, drum, humanhead, sword, train, truck, wheelchair

• Test (NovelClass): apartmenthouse, bus, car, cup, hand, homeplant, knife, motocycle, nonflyinginsect, nonwheelchair, pianoboard, rocket, ship,
submachinegun, trucknoncontainer

Qualitative reconstruction results:
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3 Network Architecture

layer output size kernel stride repeats
Input depth 128x128x1 1

conv2d 64x64x48 7 2 1
residual unit 64x64x48 3 1 3
residual unit 32x32x144 3 2 1
residual unit 32x32x144 3 1 3
residual unit 16x16x288 3 2 1

layer output size kernel stride repeats
Input silhouette 128x128x1 1

conv2d 64x64x32 7 2 1
residual unit 64x64x32 3 1 3
residual unit 32x32x96 3 2 1
residual unit 32x32x96 3 1 3
residual unit 16x16x192 3 2 1

layer output size kernel stride repeats
residual unit 16x16x480 3 1 10
residual unit 8x8x256 3 2 1
residual unit 8x8x256 3 1 4
residual unit 4x4x512 3 2 1
residual unit 4x4x512 3 1 4

FC→ h 4096 1

Table 1: Top to bottom: Network parameters for encoders Ed, Es, Eh. ReLU and batch normalization layers are not shown.

layer output size kernel stride repeats
upconv2d 8x8x256 5 2 1
upconv2d 16x16x128 5 2 1
upconv2d 32x32x64 5 2 1
upconv2d 64x64x32 5 2 1
upconv2d 128x128x1 5 2 1

Table 2: Network parameters for multi-surface decoders Gd, Gs.

layer output size kernel stride repeats
upconv3d 6x6x6x512 5 2 1
upconv3d 12x12x12x256 5 2 1
upconv3d 12x12x12x128 5 1 1
upconv3d 24x24x24x64 5 2 1
upconv3d 48x48x48x1 5 2 1

Table 3: Network parameters for the volume decoder used in the voxel network.

layer output size repeats
h→ FC 256 1

FC, softmax 40 1

Table 4: Network parameters for the classification layer in the 2.5D shape classification experiment. The classification experiment uses 370K render-
ings of 3D CAD models from the ModelNet40 dataset and is evaluated using 80/20 train/test model split ratio.
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layer output size kernel stride repeats
Input image 128x128x3 1

conv2d 64x64x64 7 2 1
max pool 32x32x64 3 2 1

residual unit 32x32x256 3 1 4
residual unit 16x16x768 3 2 7
residual unit 8x8x2048 3 2 4
average pool 1x1x2048 8 8 1

Table 5: Network parameters for the 6-view network encoder.

layer output size kernel stride repeats
upconv2d 4x4x512 4 2 1
upconv2d 8x8x256 4 2 1
upconv2d 16x16x128 4 2 1
upconv2d 32x32x64 4 2 1
upconv2d 64x64x32 4 2 1
upconv2d 128x128x1 4 2 1

Table 6: Network parameters for multi-surface decoders Gd, Gs used in the 6-view network.

layer output size kernel stride repeats
upconv3d 4x4x4x512 4 2 1
upconv3d 8x8x8x256 4 2 1
upconv3d 16x16x16x128 4 2 1
upconv3d 32x32x32x1 4 2 1

Table 7: Network parameters for the volume decoder used in the voxel network (corresponds to Tables 5 and 6).
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