
Supplementary Materials for
SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels

1. Content
This document contains supplementary materials for

the CVPR submission “SplineCNN: Fast Geometric Deep
Learning with Continuous B-Spline Kernels” with paper id
3872. The materials consist of:

• Plots for training accuracy, test accuracy and loss over
the training process for best performing experiment
configurations of MNIST superpixels and FAUST ex-
periments in Section 2,

• visualizations of the geodesic error of predictions for
all test examples of the FAUST dataset in Section 3,

• more examples for the used MNIST superpixel dataset
in Section 4, and

• the GPU algorithm for the backward step of our
method in Section 5.

2. Accuracy and loss plots
Training plots for one experiment with the best perform-

ing configuration on MNIST superpixels are shown in Fig-
ure 1a. The results were obtained with the architecture
SConv((5, 5),1,32) → MaxP(4) → SConv((5, 5),32,64) →
MaxP(4)→ AvgP→ FC(128)→ FC(10), using Exponen-
tial Linear Units (ELUs) as non-linearities after each SConv
layer and the first FC layer, B-spline degree m = 1 and lo-
cal Cartesian coordinates as input. The network was trained
for 30 epochs using the Adam Optimizer, with batch size
64, an initial learning rate of 0.01 and learning rate decay
of 0.001 after epoch 15. It should be noted that the used
pooling approach finds node clusters non-deterministically,
which leads to some kind of data augmentation in every
epoch. This is also the reason why the training accuracy
on this augmented training data is not significantly higher
than the test accuracy and does not converge to one. How-
ever, generalization to the distinct test dataset works very
well.

The exact correspondence accuracies (geodesic error of
zero) and losses of one experiment with the best experi-
ment configuration for the FAUST shape correspondence

0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

Epoch

T
ra
in
in
g/
T
es
t
A
cc
u
ra
cy

in
%

0

1

2

3

4

5

T
ra
in
in
g
L
os
s

Training Acc.
Test Acc.
Training Loss

(a) MNIST image classification on superpixels
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(b) FAUST shape correspondence

Figure 1: Training accuracies, test accuracies and loss
over the training procedure of the two SplineCNNs which
achieved the best performance in the respective tasks. For
the shape correspondence task, shown in Figure (b), the ac-
curacy for a geodesic error of zero (exact correspondence)
is shown. Training loss values are averaged over one epoch.

task are shown in Figure 1b. The SplineCNN architec-
ture is SConv((5, 5, 5),1,32) → SConv((5, 5, 5),32,64) →
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Figure 2: Vertex-wise geodesic errors of SplineCNN predictions on all 20 meshes of the FAUST test dataset.

4× SConv((5, 5, 5),64,64)→ Lin(256)→ Lin(6890), with
ELU activation after each SConv layer, m = 1 and three-
dimensional Cartesian coordinates as input. Again, the
Adam Optimizer was used to train the network for 100
epochs, using a batch size of 1, an initial learning rate of
0.01 and learning rate decay of 0.001 after epoch 60.

3. FAUST shape correspondence results

The vertex-wise geodesic error of SplineCNN predic-
tions for all FAUST test examples is shown in Figure 2. The
observation from the paper can be verified on all test exam-
ples: Most of the vertices have a geodesic error of zero,
while those which are falsely classified, often show a high
error.

4. Examples of the MNIST superpixels dataset

Figure 3 shows examples for each class and each graph
representation of the used MNIST datasets. The first and
fourth row show grid graphs with neighborhoods of 5 × 5,
the second and fifth row show the graphs from 75 superpix-
els, which are used as input for our superpixel experiment,
and the third and sixth row show results of one pooling step.

5. GPU algorithm of the backward step

In order to train our B-spline kernels, a backward step
for the convolution operator has to be defined, which can be
used by the backpropagation algorithm for gradient estima-

tion. The algorithm of this backward step is outlined in Al-
gorithm 1. The parallelization scheme of the backward step
is equivalent to the scheme of the forward algorithm pre-
sented in the paper. We parallelize over E edges and Mout
output features and compute gradients W̃, F̃in with respect
to weights and input features, given gradients F̃out with re-
spect to the output features. Analogously to the forward
step, we first gather the edgewise gradients with respect to
F̃E

out from F̃out, with gather index given by the origin node
of the edge. Then, we compute partial gradients with re-
spect to W and Fin and sum them up, using an atomic-add
operation. Last, we scatter-add the edgewise gradients F̃E

in
to F̃in, given the origin node of each edge as index. We
obtain gradients W̃, which can be used for SGD weight up-
date of W, and F̃in which will be backpropagated further to
previous layers.
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Figure 3: Examples for all classes of the used MNIST graphs: Shown are grid graphs with 5× 5 neighborhoods, the graphs
represented by 75 superpixel and the pooled versions of that graphs.
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Algorithm 1 Backward step of geometric convolution with
B-spline kernels

Input:
N : Number of nodes
Min: Number of input features per node
Mout: Number of output features per node
s = (m+ 1)d: Number of non-zero Bp for one edge
W ∈ RK×Min×Mout : Trainable weights
B ∈ RE×s: Basis products of s weights for each edge
P ∈ NE×s: Indices of s weights in W for each edge
FE

in ∈ REin : Edge-wise input features
F̃out ∈ RN×Mout : Gradient w.r.t. Fout
Output:
W̃ ∈ RK×Min×Mout : Gradient w.r.t. W
F̃in ∈ RN×Min : Gradient w.r.t. Fin
——————————————————————–
Gather F̃E

out from F̃out based on origin nodes of edges
Parallelize over e ∈ {1, ..., E} and o ∈ {1, ...,Mout}:

for each i ∈ {1, ...,Min} do
for each p ∈ {1, ..., s} do

w ←W[P[e, p], i, o]
g ← F̃E

out[e, o] · w ·B[e, p]
F̃E

in [e, i]← F̃E
in [e, i] + g

(atomic add)
g ← F̃E

out[e, o] · FE
in [e, i] ·B[e, p]

W̃[P[e, p], i, o]← W̃[P[e, p], i, o] + g
(atomic add)

end for
end for

Scatter-add F̃E
in to F̃in based on target nodes of edges

Return F̃in, W̃
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