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In this supplementary material, we provide additional
analysis in Section A, give details on the experimental setup
in Section B, and provide extended results in Section C.
We provide other supplementary materials including demo
videos at http://www.kecl.ntt.co.jp/people/
kaneko.takuhiro/projects/dtlc-gan/.

A. Additional Analysis
A.1. Representation Comparison on Simulated

Data

To clarify the limitation of the InfoGANs compared in
Figure 5, we conducted experiments on simulated data. In
particular, we used simulated data that are hierarchically
sampled in the 2D space and have globally ten categories
and locally two categories. When sampling data, we first
randomly selected a global position from ten candidates that
are equally spaced around a circle of radius 2. We then ran-
domly selected a local position from two candidates that
are rotated by 0.05 radians in clockwise and anticlockwise
directions from the global position. Based on this local po-
sition, we sampled data from a Gaussian distribution of a
standard deviation of 0.1.

We compared models that are similar to those compared
in Figure 5. As the proposed model, we used the DTLC2-
GAN, where k1 = 10 and k2 = 2. In this model, ĉ2,
the dimension of which is 10 × 2 = 20, is given to the
G. For comparison, we used two models in which latent
code dimensions are also 20 but not hierarchical. One is
the InfoGAN1×20, which has one code c11 ∼ Cat(K =
20, p = 0.05), and the other is the InfoGAN2×10, which
has two codes c11, c

2
1 ∼ Cat(K = 10, p = 0.1). For

DTLC2-GAN, we also compared the DTLC2-GANs with
and without curriculum learning.

We show the results in Figure 10. The results in-
dicate that InfoGANs (b, c) and DTLC2-GAN without
curriculum learning (d) tend to cause unbalanced or non-
hierarchical clustering. In contrast, the DTLC2-GAN with
curriculum learning (e) succeeds in capturing hierarchical
structures, i.e., the first-layer codes captured global ten

points, whereas the second-layer codes captured local two
points for each global position.

A.2. Visual Interpretability Analysis

To clarity the benefit of learned representations, we con-
ducted two XAB tests. For each test, we compared the
fourth-layer models (DTLC4-GANs or DTLC4-WGAN-
GPs) with and without curriculum learning.

• Test I: Difference Interpretability Analysis
To confirm whether ĉL is more interpretable than z,
we compared the generated images (X) with the im-
ages generated from latent variables in which one di-
mension of z is changed (A) and one dimension of ĉ4
is changed (B). The changed dimension of z or ĉ4 was
randomly chosen. We asked participants which differ-
ence is more interpretable or even.

• Test II: Semantic Similarity Analysis
To confirm whether ĉL is hierarchically interpretable,
we compared the generated images (X) with the im-
ages generated from latent variables in which one di-
mension of c2 is varied (A) and one dimension of c4
is varied (B). For each case, we fixed the higher layer
codes. The changed dimension of c2 or c4 was ran-
domly chosen. The lower layer codes were also ran-
domly chosen. We asked participants which is seman-
tically similar or even.

To eliminate bias in individual samples, we showed 25
samples at the same time. To eliminate bias in the order of
stimuli, the order (AB or BA) was randomly selected. We
show the user interfaces in Figure 11.

We summarize the results in Tables 5. In (a) and (b),
we list the results of tests I and II, respectively, using the
DTLC4-GANWS, which were used for the experiments dis-
cussed in Figure 7. The results of test I indicate that ĉL is
more interpretable than z regardless of curriculum learn-
ing. We argue that this is because z does not have any
constraints on a structure and may be used by the G in a
highly entangled manner. The results of test II indicate that

1

http://www.kecl.ntt.co.jp/people/kaneko.takuhiro/projects/dtlc-gan/
http://www.kecl.ntt.co.jp/people/kaneko.takuhiro/projects/dtlc-gan/


Model z even ĉ4
W/o curriculum 0.0 1.0 ± 1.0 99.0 ± 1.0
W/ curriculum 0.0 1.0 ± 1.0 99.0 ± 1.0

*Number of collected answers is 400
(a) Test I for DTLC4-GANWS on CIFAR-10

Model c2 even c4
W/o curriculum 22.4 ± 3.9 41.3 ± 4.6 36.2 ± 4.5
W/ curriculum 3.6 ± 1.7 17.8 ± 3.5 78.7 ± 3.8

*Number of collected answers is 450
(b) Test II for DTLC4-GANWS on CIFAR-10

Model c2 even c4
W/o curriculum 18.0 ± 4.4 31.3 ± 5.3 50.7 ± 5.7
W/ curriculum 4.7 ± 2.4 12.0 ± 3.7 83.3 ± 4.2

*Number of collected answers is 300
(c) Test II for DTLC4-WGAN-GP on CIFAR-10

Model c2 even c4
W/o curriculum 21.7 ± 4.7 38.3 ± 5.5 40.0 ± 5.6
W/ curriculum 17.0 ± 4.3 24.0 ± 4.9 59.0 ± 5.6

*Number of collected answers is 300
(d) Test II for DTLC4-WGAN-GPWS on CIFAR-10

Model c2 even c4
W/o curriculum 13.2 ± 4.2 53.6 ± 6.2 33.2 ± 5.9
W/ curriculum 2.4 ± 1.9 17.2 ± 4.7 80.4 ± 5.0

*Number of collected answers is 250
(e) Test II on DTLC4-WGAN-GP on Tiny ImageNet

Table 5. Average preference score (%) with 95% confidence in-
tervals. We compared fourth-layer models (DTLC4-GANs or
DTLC4-WGAN-GPs) with and without curriculum learning.

representations learned with curriculum learning are hierar-
chically categorized in a better way in terms of semantics
than those without it. The results support the effectiveness
of the proposed curriculum learning method.

We also conducted test II (semantic similarity analysis)
for all the DTLC4-WGAN-GPs discussed in Section 6.3.
We summarize the results in Table 5(c)–(e). We observed a
similar tendency as those of DTLC4-GANWS.

A.3. Unsupervised Learning on Complex Dataset

Although, in Section 6.1, we mainly analyzed unsuper-
vised settings on the MNIST dataset, which is relatively
simple, we can learn hierarchical representations in an un-
supervised manner even in more complex datasets. How-
ever, in this case, learning targets depend on the initial-
ization because such datasets can be categorized in various
ways. We illustrate this in Figure 12. We also evaluated the
DTLC-WGAN-GP in unsupervised settings on the CIFAR-
10 and Tiny ImageNet datasets. See Section 6.3 for details.

B. Details on Experimental Setup

In this section, we describe the network architectures
and training scheme for each dataset. We designed the
network architectures and training scheme on the basis of
techniques introduced for the InfoGAN [1]. The D and
Q1, · · · , QL share all convolutional layers (Conv.), and one
fully connected layer (FC.) is added to the final layer for
Q1, · · · , QL. This means that the difference in the calcula-
tion cost for the GAN and DTLC-GAN is negligibly small.
For discrete code ĉml , we represented Qm

l as softmax non-
linearity. For continuous code ĉml , we parameterized Qm

l
through a factored Gaussian.

In most of the experiments we conducted, we designed
the network architectures and training scheme on the ba-
sis of the techniques introduced for the DCGAN [9] and did
not use the state-of-the-art GAN training techniques to eval-
uate whether the DTLC-GAN works well without relying
on such techniques. To downscale and upscale, we respec-
tively used convolutions (Conv. ↓) and backward convolu-
tions (Conv. ↑), i.e., fractionally strided convolutions, with
stride 2. As activation functions, we used rectified linear
units (ReLUs) [8] for the G, while we used leaky rectified
linear units (LReLUs) [7, 10] for the D. We applied batch
normalization (BNorm) [5] to all the layers except the gen-
erator output layer and discriminator input layer. We trained
the networks using the Adam optimizer [6] with a mini-
batch of size 64. The learning rate was set to 0.0002 for
theD/Q1, · · · , QL and to 0.001 for theG. The momentum
term β1 was set to 0.5.

To demonstrate that our contributions are orthogonal to
the state-of-the-art GAN training techniques, we also tested
the DTLC-WGAN-GP (our DTLC-GAN with the WGAN-
GP ResNet [4]) discussed in Section 6.3. We used similar
network architectures and training scheme as the WGAN-
GP ResNet, except for the extended parts.

The details for each dataset are given below.

B.1. MNIST

The DTLCL-GAN network architectures for the MNIST
dataset, which were used for the experiments discussed in
Section 6.1, are shown in Table 6. As a pre-process, we nor-
malized the pixel value to the range [0, 1]. In the generator
output layers, we used the Sigmoid function. We used the
DTLCL-GAN, where k1 = 10 and k2, · · · , kL = 2, i.e.,
which has one discrete code c11 ∼ Cat(K = 10, p = 0.1)
in the first layer and Nl discrete codes cnl ∼ Cat(K =
2, p = 0.5) in the lth layer where l = (2, · · · , L), n =

(1, · · · , NL), and Nl =
∏l−1

i=1 ki. We added ĉL ∈ R
∏L

l=1 kl

to the generator input. The trade-off parameters λ1, · · · , λL
were set to 0.1. We trained the networks for 1 × 104 itera-
tions in unsupervised settings. As a curriculum for ĉl (l =
2, · · · , L), we added regularization −λlLHCMI(G,Ql) and
sampling after 2(l − 1)× 103 iterations.
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Generator G

Input z ∈ R64 + ĉL ∈ R
∏L

l=1 kl

1024 FC., BNorm, ReLU
7 · 7 · 128 FC., BNorm, ReLU
4× 4 64 Conv. ↑, BNorm, ReLU
4× 4 1 Conv. ↑, Sigmoid

Discriminator D / Auxiliary Function Q1, · · · , QL

Input 28× 28 1 gray image
4× 4 64 Conv. ↓, LReLU
4× 4 128 Conv. ↓, BNorm, LReLU
1024 FC., BNorm, LReLU
FC. output for D
[128 FC., BNorm, LReLU]-FC. output for Q1, · · · , QL

Table 6. DTLCL-GAN network architectures used for MNIST

B.2. CIFAR-10
The DTLCL-GAN network architectures for the CIFAR-

10 dataset, which were used for the experiments discussed
in Section 6.2, are shown in Table 7. As a pre-process, we
normalized the pixel value to the range [−1, 1]. In the gen-
erator output layers, we used the Tanh function. We used
the DTLCL-GANWS, where k1 = 10 and k2, · · · , kL = 3,
i.e., which has one ten-dimensional discrete code c11 in the
first layer and Nl discrete codes cnl ∼ Cat(K = 3, p = 1

3 )
in the lth layer where l = (2, · · · , L), n = (1, · · · , Nl),
and Nl =

∏l−1
i=1 ki. We added ĉL ∈ R

∏L
l=1 kl to the gen-

erator input. We used the supervision (i.e., class labels) for
c11. The trade-off parameters λ1, · · · , λL were set to 1. We
trained the networks for 1× 105 iterations in weakly super-
vised settings. As a curriculum for ĉl (l = 3, · · · , L), we
added regularization−λlLHCMI(G,Ql) and sampling after
2(l − 2)× 104 iterations.

B.3. DTLC-WGAN-GP
The DTLCL-WGAN-GP network architectures for the

CIFAR-10 and Tiny ImageNet datasets, which were used
for the experiments discussed in Section 6.3, are similar to
the WGAN-GP ResNet used in a previous paper [4], except
for the extended parts. We used the DTLCL-WGAN-GP,
where k1 = 10 and k2, · · · , kL = 3, i.e., which has one ten-
dimensional discrete code c11 in the first layer and Nl dis-
crete codes cnl ∼ Cat(K = 3, p = 1

3 ) in the lth layer where
l = (2, · · · , L), n = (1, · · · , Nl), and Nl =

∏l−1
i=1 ki. Fol-

lowing the AC-WGAN-GP ResNet implementation [4], we
used conditional batch normalization (CBN) [2, 3] to make
the G conditioned on the codes ĉL ∈ R

∏L
l=1 kl . CBN has

two parameters, i.e., gain parameter γj and bias parameter
bj , for each category, where j = 1, · · · ,

∏L
l=1 kl. As cur-

riculum for sampling, in learning the higher layer codes, we
used γj and bj averaged over those for the related lower
layer node codes.

In unsupervised settings, we sampled c11 from categori-

Generator G

Input z ∈ R128 + ĉL ∈ R
∏L

l=1 kl

4 · 4 · 512 FC., BNorm, ReLU
4× 4 256 Conv. ↑, BNorm, ReLU
4× 4 128 Conv. ↑, BNorm, ReLU
4× 4 64 Conv. ↑, BNorm, ReLU
3× 3 3 Conv., Tanh

Discriminator D / Auxiliary Function Q1, · · · , QL

Input 32× 32 3 color image
3× 3 64 Conv., LReLU, Dropout
4× 4 128 Conv. ↓, BNorm, LReLU, Dropout
3× 3 128 Conv., BNorm, LReLU, Dropout
4× 4 256 Conv. ↓, BNorm, LReLU, Dropout
3× 3 256 Conv., BNorm, LReLU, Dropout
4× 4 512 Conv. ↓, BNorm, LReLU, Dropout
3× 3 512 Conv., BNorm, LReLU, Dropout
FC. output for D
[128 FC., BNorm, LReLU, Dropout]-

FC. output for Q1, · · · , QL

Table 7. DTLCL-GAN network architectures used for CIFAR-10

cal distribution c11 ∼ Cat(K = 10, p = 0.1). The trade-off
parameters λ1, · · · , λL were set to 1. We trained the net-
works for 1 × 105 iterations. As a curriculum for ĉl (l =
2, · · · , L), we added regularization −λlLHCMI(G,Ql) and
sampling after 2(l − 1)× 104 iterations.

In weakly supervised settings, we used the supervision
(i.e., class labels) for c11. The λ1, · · · , λL were set to 1.
We trained the networks for 1 × 105 iterations. As a cur-
riculum for ĉl (l = 3, · · · , L), we added regularization
−λlLHCMI(G,Ql) and sampling after 2(l − 2) × 104 it-
erations.

B.4. 3D Faces
The DTLCL-GAN network architectures for the 3D

Faces dataset, which were used for the experiments dis-
cussed in Section 6.4, are shown in Table 8. As a pre-
process, we normalized the pixel value to the range [0, 1]. In
the generator output layers, we used the Sigmoid function.
We used the DTLC2-GAN, where k1 = 5 and k2 = 1, i.e.,
which has one discrete code c11 ∼ Cat(K = 5, p = 0.2)
in the first layer and five continuous codes c12, · · · , c52 ∼
Unif(−1, 1) in the second layer. We added ĉ2 ∈ R

∏2
l=1 kl

to the generator input. The trade-off parameters λ1 and λ2
were set to 1. We trained the networks for 1 × 104 itera-
tions in unsupervised settings. As a curriculum for ĉ2, we
added regularization −λ2LHCMI(G,Q2) and sampling af-
ter 2× 103 iterations.

B.5. CelebA
The DTLCL-GAN network architectures for the CelebA

dataset, which were used for the experiments discussed in
Section 6.5, are shown in Table 9. As a pre-process, we
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Generator G

Input z ∈ R128 + ĉL ∈ R
∏L

l=1 kl

1024 FC., BNorm, ReLU
8 · 8 · 128 FC., BNorm, ReLU
4× 4 64 Conv. ↑, BNorm, ReLU
4× 4 1 Conv. ↑, Sigmoid

Discriminator D / Auxiliary Function Q1, · · · , QL

Input 32× 32 1 gray image
4× 4 64 Conv. ↓, LReLU
4× 4 128 Conv. ↓, BNorm, LReLU
1024 FC., BNorm, LReLU
FC. output for D
[128 FC., BNorm, LReLU]-FC. output for Q1, · · · , QL

Table 8. DTLCL-GAN network architectures used for 3D Faces

Generator G

Input z ∈ R128 + ĉL ∈ R1+
∏L

l=2 kl

4 · 4 · 512 FC., BNorm, ReLU
4× 4 256 Conv. ↑, BNorm, ReLU
4× 4 128 Conv. ↑, BNorm, ReLU
4× 4 64 Conv. ↑, BNorm, ReLU
4× 4 3 Conv. ↑, Tanh

Discriminator D / Auxiliary Function Q1, · · · , QL

Input 64× 64 3 color image
4× 4 64 Conv. ↓, LReLU
4× 4 128 Conv. ↓, BNorm, LReLU
4× 4 256 Conv. ↓, BNorm, LReLU
4× 4 512 Conv. ↓, BNorm, LReLU
FC. output for D
[128 FC., BNorm, LReLU]-FC. output for Q1, · · · , QL

Table 9. DTLCL-GAN network architectures used for CelebA

normalized the pixel value to the range [−1, 1]. In the gen-
erator output layers, we used the Tanh function. We used the
DTLCL-GANWS, where k1 = 2 and k2, · · · , kL = 3, par-
ticularly where hierarchical representations are learned only
for the attribute presence state. Therefore, N2 = 1 and Nl

(l = 3, · · · , L) is calculated as Nl =
∏l−1

i=2 ki. This model
has one two-dimensional discrete code in the first layer and
Nl discrete codes cnl ∼ Cat(K = 3, p = 1

3 ) in the lth layer
where l = (2, · · · , L) and n = (1, · · · , Nl). We added
ĉL ∈ R1+

∏L
l=2 kl to the generator input. We used the su-

pervision (i.e., an attribute label) for c11. The trade-off pa-
rameters λ1, · · · , λL were set to 1, 0.1, and 0.04 for bangs,
glasses, and smiling, respectively. We trained the networks
for 5 × 104 iterations in weakly supervised settings. As a
curriculum for ĉl (l = 3, · · · , L), we added regularization
−λlLHCMI(G,Ql) and sampling after 2(l − 2) × 104 iter-
ations.

Generator G

Input z ∈ R256 + ĉL ∈ R
∏L

l=1 kl

128 FC., ReLU
128 FC., ReLU
2 FC.

Discriminator D / Auxiliary Function Q1, · · · , QL

Input 2D simulated data
(scaled by factor 4 (roughly scaled to range [−1, 1]))
128 FC. ReLU
128 FC. ReLU
FC. output for D
[128 FC., ReLU]-FC. output for Q1, · · · , QL

Table 10. DTLCL-GAN network architectures used for simulated
data

B.6. Simulated Data
The DTLCL-GAN network architectures for the sim-

ulated data used for the experiments discussed in Sec-
tion A.1, are shown in Table 10. As a pre-process, we
scaled the discriminator input by factor 4 (roughly scaled to
range [−1, 1]). We used the DTLC2-GAN, where k1 = 10
and k2 = 2, i.e., which has one discrete code c11 ∼
Cat(K = 10, p = 0.1) in the first layer and ten discrete
codes c12, · · · , c102 ∼ Cat(K = 2, p = 0.5) in the sec-
ond layer. We added ĉ2 ∈ R

∏2
l=1 kl to the generator in-

put. The trade-off parameters λ1 and λ2 were set to 1. We
trained the networks using the Adam optimizer with a mini-
batch of size 512. The learning rate was set to 0.0001 for
D/Q1, Q2 and G. The momentum term β1 was set to 0.5.
We trained the networks for 3 × 104 iterations in unsuper-
vised settings. As a curriculum for ĉ2, we added regulariza-
tion −λ2LHCMI(G,Q2) and sampling after 2 × 104 itera-
tions.

C. Extended Results
C.1. MNIST

We give extended results of Figure 6 in Figures 13–
15. We used the DTLC4-GAN, where k1 = 10 and
k2, k3, k4 = 2. Figure 13 shows the generated image ex-
amples using the DTLC4-GAN learned without a curricu-
lum. Figure 14 shows the generated image examples us-
ing the DTLC4-GAN learned only with the curriculum for
regularization. Figure 15 shows the generated image exam-
ples using the DTLC4-GAN learned with the full curricu-
lum (curriculum for regularization and sampling: proposed
curriculum learning method). The former two DTLC4-
GANs (without the full curriculum) exhibited confusion
between inner-layer and intra-layer disentanglement, while
the DTLC4-GAN with the full curriculum succeeded in
avoiding confusion. The inner-category divergence evalu-
ation on the basis of the SSIM in Figure 6 also supports
these observations.
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C.2. CIFAR-10
We give extended results of Figure 7 in Figures 16–

18. We used the DTLC4-GANWS, where k1 = 10 and
k2, k3, k4 = 3. We used class labels as supervision.
Figure 16 shows the generated image samples using the
DTLC4-GANWS learned without a curriculum. Figure 17
shows the generated image samples using the DTLC4-
GANWS learned only with the curriculum for regulariza-
tion. Figure 18 shows the generated image samples us-
ing the DTLC4-GANWS learned with the full curriculum
(curriculum for regularization and sampling: proposed cur-
riculum learning method). All models succeeded in learn-
ing disentangled representations in class labels since they
are given as supervision; however, the former two DTLC4-
GANWSs (without the full curriculum) exhibited confusion
between inner-layer and intra-layer disentanglement from
second- to fourth-layer codes. In contrast, the DTLC4-
GANWS with the full curriculum succeeded in avoiding
confusion. The inner-category divergence evaluation on the
basis of the SSIM in Figure 7 also supports these observa-
tions.

We also show the results for the DTLC5-GANWS,
where k1 = 10 and k2, · · · , k5 = 3, in Figure 19. In this
model, a total of 10× 3× 3× 3× 3 = 810 categories were
learned in a weakly supervised manner.

C.3. DTLC-WGAN-GP
We show the generated image samples using the mod-

els discussed in Section 6.3, in Figure 20–22. We used the
DTLC4-WGAN-GP, where k1 = 10 and k2, k3, k4 = 3.
In weakly supervised settings, we used class labels as su-
pervision. Figure 20 shows the generated image sam-
ples using the DTLC4-WGAN-GP on CIFAR-10 (unsuper-
vised). Figure 21 shows the generated image samples using
the DTLC4-WGAN-GPWS on CIFAR-10 (weakly super-
vised). Figure 22 shows the generated image samples using
the DTLC4-WGAN-GP on Tiny ImageNet (unsupervised).

C.4. 3D Faces
We give extended results of Figure 8 in Figure 23.

Similarly to Figure 8, we compared three models, the
InfoGANC5, which is the InfoGAN with five continuous
codes c11, · · · , c51 ∼ Unif(−1, 1) (used in the InfoGAN
study [1]), InfoGANC1D1, which is the InfoGAN with one
categorical code c11 ∼ Cat(K = 5, p = 0.2) and one con-
tinuous code c21 ∼ Unif(−1, 1), and DTLC2-GAN, which
has one categorical code c11 ∼ Cat(K = 5, p = 0.2)
in the first layer and five continuous codes c12, · · · , c52 ∼
Unif(−1, 1) in the second layer. In the InfoGANC5 and
InfoGANC1D1, the individual codes tend to capture inde-
pendent and exclusive semantic features because they have
a flat relationship, while in the DTLC2-GAN, lower layer
codes learn category-specific (in this case, pose-specific) se-
mantic features conditioned on higher layer codes.

C.5. CelebA

We show the generated image examples using the mod-
els discussed in Section 6.5, in Figures 24–26. We used
the DTLC3-GANWS, where k1 = 2 and k2, k3 = 3, and
particularly hierarchical representations are learned only for
the attribute presence state. We show the results for bangs,
glasses, and smiling in Figures 24, 25, and 26, respectively.
These results indicate that the DTLC-GANWS can learn
attribute-specific hierarchical interpretable representations
by only using the supervision of the binary indicator of at-
tribute presence.

We also show the generated image examples and im-
age retrieval examples using the DTLC4-GANWS, where
k1 = 2 and k2, k3, k4 = 3, in Figures 27 and 28, respec-
tively. We show the results for glasses. In this model, a
total of 1 + 1 × 3 × 3 × 3 = 28 categories were learned
in a weakly supervised setting. These results indicate that
more detailed semantic features were captured in the lower
layers. As quantitative evaluation of image retrieval, we
calculated attribute-specific SSIM scores. The scores for
c1, ĉ2, ĉ3, and ĉ4 were 0.188, 0.257, 0.266, and 0.267, re-
spectively. These results indicate that as the layer becomes
lower, the correspondence rate in attribute-specific areas be-
comes larger and support the qualitative observations.
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Figure 10. Evaluation on simulated data: (a) We used simulated data, which have globally ten categories and locally two categories. In
(b), 10 × 10 = 100 categories are learned at the same time. In (c)(d), 20 categories are learned at the same time, causing unbalanced
and non-hierarchical clustering. In (e), ten global categories are first discovered then two local categories are learned. Upper left: kernel
density estimation (KDE) plots. Others: samples from real data or models. Same color indicates same c11 category.
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 w/ curriculum (c) Test II on DTLC4-GAN
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 w/o curriculum (d) Test II on DTLC4-GAN
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 w/ curriculum

Figure 11. User interfaces for XAB tests: (a) Samples in “Image: A” are generated from latent variables in which one dimension of ĉL
is changed. Samples in “Image: B” are generated from latent variables in which one dimension of z is changed. (b) Samples in “Image:
A” are generated from latent variables in which one dimension of z is changed. Samples in “Image: B” are generated from latent variables
in which one dimension of ĉL is changed. (c) Samples in “Image: A” are generated from latent variables in which c4 is varied. Samples
in “Image: B” are generated from latent variables in which c2 is varied. (d) Samples in “Image: A” are generated from latent variables in
which c4 is varied. Samples in “Image: B” are generated from latent variables in which c2 is varied.
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Hair style is learned

Pose is learned

(a)

(b)

Figure 12. Representation comparison between two models that are learned in fully unsupervised manner with different initial-
ization: In (a), samples are generated from one model, while, in (b), samples are generated from another model. In each row, c1 and
c2 are varied per three images and per image, respectively. In this setting, learning targets (in (a), hair style and in (b), pose) depend on
initialization because this dataset can be categorized in various ways.

Figure 13. Manipulating latent codes in DTLC4-GAN (learned without curriculum) on MNIST: In results noted with cl (l =
1, · · · , 4), each column includes five samples generated from same c1, · · · , cl but different z and random cl+1, · · · , cL. In each block,
each row contains samples generated from same z and c1 but different c2, · · · , cL. In particular, ci (i = 2, · · · , l − 1) was varied per∏l−1

j=i kj images, and cl was varied per image. ci (i = l + 1, · · · , L) was randomly chosen.
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Figure 14. Manipulating latent codes in DTLC4-GAN (learned only with curriculum for regularization) on MNIST: View of figure
is same as that in Figure 13

Figure 15. Manipulating latent codes in DTLC4-GAN (learned with full curriculum) on MNIST: View of figure is same as that in
Figure 13
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Figure 16. Manipulating latent codes in DTLC4-GANWS (learned without curriculum) on CIFAR-10: In each block, each column
includes five samples generated from same c1, · · · , c4 but different z. Each row contains samples generated from same z and c1 but
different c2, c3, and c4. In particular, c2, c3, and c4 were varied per nine images, per three images, and per image, respectively. Among
all blocks, samples in ith row (i = 1, · · · , 5) share same z.

9



automobile

airplane

bird

cat

deer

dog

frog

horse

ship

truck

Figure 17. Manipulating latent codes in DTLC4-GANWS (learned only with curriculum for regularization) on CIFAR-10: View of
figure is same as that in Figure 16
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Figure 18. Manipulating latent codes in DTLC4-GANWS (learned with full curriculum) on CIFAR-10: View of figure is same as that
in Figure 16
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Figure 19. Manipulating latent codes in DTLC5-GANWS (learned with full curriculum) on CIFAR-10: View of figure is similar to
that in Figure 16. Total of 10× 3× 3× 3× 3 = 810 categories were learned in weakly supervised setting.
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Figure 20. Manipulating latent codes in DTLC4-WGAN-GP on CIFAR-10: View of figure is similar to that in Figure 16. All categories
(10× 3× 3× 3 = 270) were learned in fully unsupervised setting.
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Figure 21. Manipulating latent codes in DTLC4-WGAN-GPWS on CIFAR-10: View of figure is similar to that in Figure 16. All
categories (10× 3× 3× 3 = 270) were learned in weakly supervised setting.
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Figure 22. Manipulating latent codes in DTLC4-WGAN-GP on Tiny ImageNet: View of figure is similar to that in Figure 16. All
categories (10× 3× 3× 3 = 270) were learned in fully unsupervised setting.
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(a-i) Varying 

(a-ii) Varying 

(a-iii) Varying 

(a-iv) Varying 

(a-v) Varying 

(a) InfoGAN
C5

(b) InfoGAN
C1D1

(c) DTLC2-GAN

(b-i) Varying      for  

(b-ii) Varying      for  

(b-iii) Varying      for  

(b-iv) Varying      for  

(b-v) Varying      for  

(c-i) Varying      for  

(c-ii) Varying      for  

(c-iii) Varying      for  

(c-iv) Varying      for  

(c-v) Varying      for  

Figure 23. Manipulating latent codes on 3D Faces: In each block, each column includes five samples generated from same latent codes
but different noise. Each row contains samples generated from same noise and same discrete codes but different continuous codes (varied
from left tor right). In tandem blocks, samples in ith row (i = 1, · · · , 5) were generated from same noise. (a) In InfoGANC5, each
continuous code c1, · · · , c5 captures independent and exclusive semantic features (e.g., orientation of lighting in c41 and elevation in c51).
(b) In InfoGANC1D1, discrete code c11 captures pose, while continuous code c21 captures orientation of lighting regardless of c11. Also
in this model, each code captures independent and exclusive semantic features. (c) In DTLC2-GAN, discrete code c11 captures pose, and
continuous codes c12, · · · , c52 capture detailed variations for each pose. In this model, lower layer codes learn category-specific (in this
case, pose-specific) semantic features conditioned on higher layer codes.
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(a) (b) Varying           for  

Figure 24. Manipulating latent codes in DTLC3-GANWS on CelebA (bangs): Each column includes five samples generated from same
c1, c2, and c3 but different z. In (a), samples are generated from c

1(1)
1 = 1, i.e., attribute is absent. In this case, hierarchical representations

are not learned. In (b), samples are generated from c
1(2)
1 = 1, i.e., attribute is present. In this case, hierarchical representations are learned.

In each row, c2 and c3 are varied per three images and per image, respectively.

(a) (b) Varying           for  

Figure 25. Manipulating latent codes in DTLC3-GANWS on CelebA (glasses): View of figure is same as that in Figure 24

(a) (b) Varying           for  

Figure 26. Manipulating latent codes in DTLC3-GANWS on CelebA (smiling): View of figure is same as that in Figure 24
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(a) (b) Varying                 for 

Figure 27. Manipulating latent codes in DTLC4-GANWS on CelebA (glasses): View of figure is similar to that in Figure 24. Total of
1 + 1× 3× 3× 3 = 28 categories were learned in weakly supervised settings.

Query

✓ Glasses
     Type
     Details
     More Details

✓ Glasses
✓ Type
     Details
     More Details

✓ Glasses
✓ Type
✓ Details
     More Details

✓ Glasses
✓ Type
✓ Details
✓ More Details

Figure 28. Hierarchical image retrieval using DTLC4-GANWS on CelebA (glasses)
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