
A. Analysis on learned features
In Fig. 6 of the main paper, we visualized the learned fea-

tures of 11-layer CNN and demonstrated that BC learning
has the ability to impose a constraint on the feature distribu-
tion. Here, we show the results of more detailed analysis on
the learned features. We used the same model as that used
in Fig. 6 of the main paper.

A.1. Fisher’s criterion
We calculated Fisher’s criterion [8] for all combinations

of two classes. Let {xn}n∈Ci and mi be features of class Ci

and the average of them (1
Ni

Σn∈Cixn), respectively. Here,
Fisher’s criterion between class C1 and C2 is defined as:

w⊤SBw

w⊤SWw
, (7)

where:
SB = (m1 −m2)(m1 −m2)

⊤,

SW = Σn∈C1(xn −m1)(xn −m1)
⊤

+ Σn∈C2(xn −m2)(xn −m2)
⊤,

w ∝ S−1
W (m1 −m2).

(8)

We show the mean Fisher’s criterion in Table 5. We
used the activations of the 10-th layer against training data.
Fisher’s criterion of the features learned with BC learning
was larger than that of standard learning. This result shows
that a discriminative feature space is learned with BC learn-
ing.

Table 5. Comparison of mean Fisher’s criterion. BC learning in-
deed enlarges Fisher’s criterion in the feature space.

Learning Mean Fisher’s criterion

Standard 1.76
BC (ours) 1.97

A.2. Activation of final layer
We investigated the activation of the final layer against

training images. The results are shown in Fig. 7. The (i, j)
element represents the mean activation of i-th neuron of the
final layer (before the softmax) against the training images
of class j. As shown in this figure, each neuron responds
only to the corresponding class when using BC learning.
The responses against other classes are almost the same
level and most of them are negative values, whereas the re-
sponses against classes other than the corresponding class
have a large variance and some of them are positive val-
ues when using standard learning. This result indicates that
the features of each class learned with BC learning are dis-
tributed in the opposite side of the features of other classes.
Such features can be easily separated. It is possible that
BC learning indeed regularizes the positional relationship
among the feature distributions.

Standard learning BC learning (ours)

Figure 7. Activation of the final layer. The (i, j) element repre-
sents the mean activation of i-th neuron of the final layer (before
the softmax) against class j.

Standard learning BC learning (ours)

Training

Testing

Figure 8. Feature distributions against training and testing data.

A.3. Training features vs. testing features

We compared the feature distributions against training
and testing data. We visualized the activations of the 10-
th layer using 3-D PCA. The results are shown in Fig. 8.
The feature distributions of BC learning against training and
testing data have similar shapes, whereas some testing ex-
amples are projected onto the points near the origin when
using standard learning. This result indicates that the model
learned with BC learning has a higher generalization ability.

B. Details of CIFAR experiments
B.1. Learning settings

We summarize the learning settings for CIFAR experi-
ments in Table 6. Although most of them follow the orig-
inal learning settings in [28, 13, 9], we slightly modified
the learning settings for ResNet-29, ResNeXt-29 [28], and

Table 6. Learning settings for CIFAR experiments. The figures between brackets indicate the default learning settings.

Model # of epochs Initial LR LR schedule nGPU mini-batch size

11-layer CNN 250 0.1 {100, 150, 200} 1 128
ResNet-29 [28] 375 (300) 0.0125 (0.1) {150, 225, 300} ({150, 225}) 1 (8) 16 (128)
ResNeXt-29 [28] 375 (300) 0.1 {150, 225, 300} ({150, 225}) 8 128
DenseNet [13] 375 (300) 0.1 {150, 225, 300} ({150, 225}) 4 64
Shake-Shake [9] (CIFAR-10) 1800 0.2 cosine 2 128
Shake-Shake [9] (CIFAR-100) 1800 0.025 cosine 2 32

DenseNet [13] in order to achieve a satisfactory perfor-
mance. We trained the model by beginning with a learning
rate of Initial LR, and then divided the learning rate by 10 at
the epoch listed in LR schedule, except that a cosine learn-
ing rate scheduling was used for Shake-Shake. We then ter-
minated training after # of epochs epochs.

B.2. Configuration of 11-layer CNN
We show the configuration of 11-layer CNN in Table

7. We applied ReLU activation for all hidden layers and
batch normalization [14] to the output of all convolutional
layers. We also applied 0.5 of dropout [24] to the output
of fc4 and fc5. We used a weight initialization of [10]
for all convolutional layers. We initialized the weights of
each fully connected layer using the uniform distribution
U(−

√
1/n,

√
1/n), where n is the input dimension of the

layer. By using BC learning, we can achieve around 5.2%
and 23.7% error rates on CIFAR-10 and CIFAR-100, re-
spectively, despite the simple architecture.

Table 7. Configuration of 11-layer CNN.

Layer ksize stride pad # filters Data shape

Input (3, 32, 32)

conv1-1 3 1 1 64
conv1-2 3 1 1 64
pool1 2 2 (64, 16, 16)

conv2-1 3 1 1 128
conv2-2 3 1 1 128
pool2 2 2 (128, 8, 8)

conv3-1 3 1 1 256
conv3-2 3 1 1 256
conv3-3 3 1 1 256
conv3-4 3 1 1 256
pool3 2 2 (256, 4, 4)

fc4 1024 (1024,)
fc5 1024 (1024,)
fc6 # classes (# classes,)

