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A. Network architectures

In this section we describe the exact network architec-
tures used for the 3D VA-GAN. We present the critic and
map generator functions as Python-inspired pseudo code,
which we found easier to interpret than a graphical repre-
sentation. The layer parameters are specified as arguments
to the layer functions. Unless otherwise specified all convo-
lutional layers used a stride of 1x1x1 and a rectified linear
unit (ReLU) non-linearity.

The architecture of the critic function D(x) is shown in
Fig. 1. The conv3D_layer function performs a reg-
ular 3D convolution without batch normalisation and the
global_averagepool3D function performs an averag-
ing over the spatial dimensions of the feature maps.

The architecture for the map generator function M(x)
is shown in Fig. 2. Here, the conv3D_layer_bn
is a 3D convolutional layer with batch normalisation
before the nonlinearity. The deconv3D_layer_bn
learns an upsampling operation as in the original U-
Net and also uses batch normalisation. Lastly, the
crop_and_concat_layer implements the skip con-
nections across the bottleneck by stacking the feature maps
along the dimension of the channels.

Note that the architectures for the 2D experiments on
synthetic data were identical, except all 3D operations were
replaced by their 2D equivalents.

B. Close-up analysis of VA-GAN

In Fig. 3 we present a larger view of all three orthogo-
nal planes for an additional subject. In order to allow for an
enlarged view, we only include the results obtained by VA-
GAN and the actual observed changes from MCI to AD.
As before it can be seen that VA-GAN produced visual at-
tribution maps that very closely approximate the observed
deformations. In particular, we note that for this subject
VA-GAN correctly predicted a smaller disease effect in the
left hippocampus compared to the right hippocampus.

C. Details of MR brain data cohort
The MR brain image data used in preparation of this

article were obtained from the Alzheimers Disease Neu-
roimaging Initiative (ADNI) database (adni.loni.usc.edu).
As such, the investigators within the ADNI contributed
to the design and implementation of ADNI and/or pro-
vided data but did not participate in analysis or writing
of this report. A complete listing of ADNI investigators
can be found at: http://adni.loni.usc.edu/
wp-content/uploads/how_to_apply/ADNI_
Acknowledgement_List.pdf.

Specifically, we used T1-weighted MR data from the
ADNI1, ADNIGO and ADNI2 cohorts which were ac-
quired in with a mixture of 1.5T and 3T scanners. The data
consisted of 5770 images, acquired from 1291 subjects. The
images for each subject were acquired at separate visits that
were spaced in regular intervals from 6 months to one year
and usually spanned multiple years. On average each sub-
ject was scanned 4.5 times. The cohort consisted of 496
female and 795 male subjects. 2839 of the images were
acquired using a 1.5T magnet, the remainder using a 3T
magnet. The distribution of the ages at which the images
were acquired is shown in Fig. 4. We only considered im-
ages with a diagnosis of mild cognitive impairment (MCI)
or Alzheimer’s disease (AD).

After preprocessing we randomly divided the data into a
training, testing and validation set. We performed the split
on a subject basis rather than an image basis. The exact split
is shown in Table 1. The table furthermore shows the distri-
bution over the diagnoses on a image level, and the number
of subjects which have undergone a conversion from MCI
to AD in the examined time intervals.

The training data was used for learning the mask gener-
ator and critic parameters which minimise the cost function
in Eq. 4 of the main article. The validation set was used
for monitoring of the training based on the Wasserstein dis-
tance and visual examination of generated masks, and for
hyperparameter tuning. The test set was used for the final
qualitative and quantitative evaluation.
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d e f c r i t i c ( x ) :

# i n p u t s
# x : an image from c a t e g o r y c =0 , o r an image from c a t e g o r y c=1
# p l u s t h e a d d i t i v e mask M( x )
# r e t u r n s
# l o g i t s : t h e c r i t i c o u t p u t f o r x

conv1 1 = c o n v 3 D l a y e r ( x , n u m f i l t e r s =16 , k e r n e l s i z e = ( 3 , 3 , 3 ) )

poo l1 = maxpoo l3D laye r ( conv1 1 )

conv2 1 = c o n v 3 D l a y e r ( pool1 , n u m f i l t e r s =32 , k e r n e l s i z e = ( 3 , 3 , 3 ) )

poo l2 = maxpoo l3D laye r ( conv2 1 )

conv3 1 = c o n v 3 D l a y e r ( pool2 , n u m f i l t e r s =64 , k e r n e l s i z e = ( 3 , 3 , 3 ) )
conv3 2 = c o n v 3 D l a y e r ( conv3 1 , n u m f i l t e r s =64 , k e r n e l s i z e = ( 3 , 3 , 3 ) )

poo l3 = maxpoo l3D laye r ( conv3 2 )

conv4 1 = c o n v 3 D l a y e r ( pool3 , n u m f i l t e r s =128 , k e r n e l s i z e = ( 3 , 3 , 3 ) )
conv4 2 = c o n v 3 D l a y e r ( conv4 1 , n u m f i l t e r s =128 , k e r n e l s i z e = ( 3 , 3 , 3 ) )

poo l4 = maxpoo l3D laye r ( conv4 2 )

conv5 1 = c o n v 3 D l a y e r ( pool4 , n u m f i l t e r s =256 , k e r n e l s i z e = ( 3 , 3 , 3 ) )
conv5 2 = c o n v 3 D l a y e r ( conv5 1 , n u m f i l t e r s =256 , k e r n e l s i z e = ( 3 , 3 , 3 ) )
conv5 3 = c o n v 3 D l a y e r ( conv5 2 , n u m f i l t e r s =256 , k e r n e l s i z e = ( 3 , 3 , 3 ) )

conv5 4 = c o n v 3 D l a y e r ( conv5 3 ,
n u m f i l t e r s =1 ,
k e r n e l s i z e = ( 1 , 1 , 1 ) ,
n o n l i n e a r i t y = i d e n t i t y )

l o g i t s = g l o b a l a v e r a g e p o o l 3 D ( conv5 4 )

r e t u r n l o g i t s

Figure 1. VA-GAN critic architecture.

Table 1. Detailed information on data split into training, testing
and validation data.

Train Test Validation Total
Num. Imag.

MCI 2520 755 639 3914
AD 1199 399 266 1864
Total 3719 1154 905 5778

Num. Subj.
Converters 172 51 49 272
Non-converters 653 208 158 1019
Total 825 259 207 1291

In case of interest, a list of the exact ADNI subject ID’s
used in the study can be found in our public code repository
(https://github.com/baumgach/vagan-code)
in the folder data/subject rids.txt.

D. Alternative classifier architecture

It was suggested during the reviews that our classifier ar-
chitecture with two dense layers before the final output is
responsible for the poor performance of the backpropaga-
tion based saliency map techniques. It was recommended
that we investigate the popular class of architectures where
the final convolutions are aggregated using a global average
pooling step over the spatial dimensions of the activation
maps, followed by a single dense layer. Examples of this
type of architecture include the works of He at al. [1] and
Lin et al. [2]. In our experiments, the class activation map-
pings (CAM) method [7] was also using this general archi-
tecture. In theory this may abstract the data less before the
final output and perhaps produce maps that can more easily
identify multiple regions in the image.

To investigate this theory we repeated the synthetic ex-
periment (outlined in Section 4.2 of the main article), but
replaced the final two dense layers in our synthetic experi-
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d e f m a p g e n e r a t o r ( x ) :

# i n p u t s
# x : an image from c a t e g o r y c=1
# r e t u r n s
# M: a d d i t i v e map M( x ) such t h a t y = x + M( x ) a p p e a r s t o be from c=0

# Encoder :

conv1 1 = c o n v 3 D l a y e r b n ( x , n u m f i l t e r s =16 , k e r n e l s i z e = ( 3 , 3 , 3 ) )
conv1 2 = c o n v 3 D l a y e r b n ( conv1 1 , n u m f i l t e r s =16 , k e r n e l s i z e = ( 3 , 3 , 3 ) )

poo l1 = maxpoo l3D laye r ( conv1 2 )

conv2 1 = c o n v 3 D l a y e r b n ( pool1 , n u m f i l t e r s =32 , k e r n e l s i z e = ( 3 , 3 , 3 ) )
conv2 2 = c o n v 3 D l a y e r b n ( conv2 1 , n u m f i l t e r s =32 , k e r n e l s i z e = ( 3 , 3 , 3 ) )

poo l2 = maxpoo l3D laye r ( conv2 2 )

conv3 1 = c o n v 3 D l a y e r b n ( pool2 , n u m f i l t e r s =64 , k e r n e l s i z e = ( 3 , 3 , 3 ) )
conv3 2 = c o n v 3 D l a y e r b n ( conv3 1 n u m f i l t e r s =64 , k e r n e l s i z e = ( 3 , 3 , 3 ) )

poo l3 = maxpoo l3D laye r ( conv3 2 )

# B o t t l e n e c k :

conv4 1 = c o n v 3 D l a y e r b n ( pool3 , n u m f i l t e r s =n128 , k e r n e l s i z e = ( 3 , 3 , 3 ) )
conv4 2 = c o n v 3 D l a y e r b n ( conv4 1 , n u m f i l t e r s =128 , k e r n e l s i z e = ( 3 , 3 , 3 ) )

# Decoder :

upconv3 = d e c o n v 3 D l a y e r b n ( conv4 2 , k e r n e l s i z e = ( 4 , 4 , 4 ) , s t r i d e s = ( 2 , 2 , 2 ) , n u m f i l t e r s =64)
c o n c a t 3 = c r o p a n d c o n c a t l a y e r ( [ upconv3 , conv3 2 ] )

conv5 1 = c o n v 3 D l a y e r b n ( conca t3 , n u m f i l t e r s =64 , k e r n e l s i z e = ( 3 , 3 , 3 ) )
conv5 2 = c o n v 3 D l a y e r b n ( conv5 1 , n u m f i l t e r s =64 , k e r n e l s i z e = ( 3 , 3 , 3 ) )

upconv2 = d e c o n v 3 D l a y e r b n ( conv5 2 , k e r n e l s i z e = ( 4 , 4 , 4 ) , s t r i d e s = ( 2 , 2 , 2 ) , n u m f i l t e r s =32)
c o n c a t 2 = c r o p a n d c o n c a t l a y e r ( [ upconv2 , conv2 2 ] )

conv6 1 = c o n v 3 D l a y e r b n ( conca t2 , n u m f i l t e r s =32 , k e r n e l s i z e = ( 3 , 3 , 3 ) )
conv6 2 = c o n v 3 D l a y e r b n ( conv6 1 , n u m f i l t e r s =32 , k e r n e l s i z e = ( 3 , 3 , 3 ) )

upconv1 = d e c o n v 3 D l a y e r b n ( conv6 2 , k e r n e l s i z e = ( 4 , 4 , 4 ) , s t r i d e s = ( 2 , 2 , 2 ) , n u m f i l t e r s =16)
c o n c a t 1 = c r o p a n d c o n c a t l a y e r ( [ upconv1 , conv1 2 ] )

conv8 1 = c o n v 3 D l a y e r b n ( conca t1 , n u m f i l t e r s =16 , k e r n e l s i z e = ( 3 , 3 , 3 ) )

M = c o n v 3 D l a y e r ( conv8 1 ,
n u m f i l t e r s =1 ,
k e r n e l s i z e = ( 3 , 3 , 3 ) ,
n o n l i n e a r i t y = i d e n t i t y )

r e t u r n M

Figure 2. VA-GAN map generator architecture.

ments by a global average pooling and a single dense layer.
After full convergence of the network from the main article
and the alternative architecture, we obtained the saliency
maps shown in Fig. 5. In addition to the integrated gradi-
ents method [6] already shown in the main article, here we
also show the results for normal backprop [4] and guided

backprop [5]. It can be observed that indeed, with the al-
ternative architecture, normal and guided backprop manage
to correctly attribute some of the pixels of the peripheral
box, albeit very faintly (emphasised with white arrows in
Fig 5). However, regardless of the architecture the classi-
fier appears to focus only on the pixels of one of the edges,
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Figure 3. Coronal, sagittal and axial views of the predicted and observed disease effect maps for an additional subject. The location of
the planes is indicated by dotted white lines in the right column. In order to allow for an enlarged view, only the predictions obtained by
VA-GAN are shown. The ADNI rid and the ADAS13 score for this subject are reported on the left-hand side.

which is only subset of the features characterising this class.
Note that the orientation of the attributed edges depends on
the random initialisation of the network.

Nevertheless, the feature attribution maps obtained using
the backprop-based techniques are not of comparable qual-
ity to the maps produced by our proposed VA-GAN method.

For emphasis we show the corresponding feature attribu-
tion map produced with VA-GAN plus two more samples
in Fig. 6.

To conclude, we would like to note that from the point
of view of saliency maps, (1) two dense layers or (1) av-
erage pooling followed by a dense layer, are conceptually
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Figure 4. Histogram of the subject age of all ADNI images used in
this work. The mean age was 74.89 years, with a standard devia-
tion of 7.70.
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Figure 5. Saliency maps obtained using simple backpropagation,
guided backpropagation and integrated gradients for two differ-
ent network architectures: (1) the original architecture from the
synthetic experiments (Section 4.2) in the main article, (2) an al-
ternative architecture with a global average pooling layer followed
by a single dense layer before the final classification output. The
white arrows in the second row highlight very faint attributions of
the second box.

Figure 6. Visual feature attribution maps obtained using our pro-
posed VA-GAN method. The first sample corresponds to the input
image in Fig. 5. The other two images correspond to other random
input images.

similar. In both cases the final prediction aggregates infor-
mation from multiple receptive fields covering the whole
image. Therefore, it is not surprising that the two networks
behave similarly. As outlined in the work of Shwartz-Ziv

et al. [3] the optimisation of neural network classifiers re-
sults in a trade off between compression of input features
and predictive accuracy. In both networks, the final predic-
tion has access to all features in the image and thus has the
potential to compress away features that are redundant for
classification (such as one of the two boxes).
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