
Supplementary material for
A Certifiably Globally Optimal Solution to the Non-Minimal Relative Pose Problem

Jesus Briales
MAPIR-UMA Group

University of Malaga, Spain
jesusbriales@uma.es

Laurent Kneip
Mobile Perception Lab

SIST ShanghaiTech
lkneip@shanghaitech.edu.cn

Javier Gonzalez-Jimenez
MAPIR-UMA Group

University of Malaga, Spain
javiergonzalez@uma.es

Contents

1. Brief summary 1

2. Compact formulation of the covariance matrix of normals M(R) 2

3. Data matrix for the quadratic objective in terms of vec(X) 3

4. Details on the standard QCQP formulation 3
4.1. Objective matrix: Q̃0 . 4
4.2. Constraint matrices for all sphere constraints: Ĉt . 4
4.3. Constraint matrices for all rotation constraints: ĈR . 5
4.4. Constraint matrices for all constraints on auxiliary variable: ĈX . 8
4.5. Summary . 9

5. Symmetries in the algebraic error 9

6. Equivalence to algebraic objective of 8-point algorithm 10

7. Convex set of optimal SDP solutions 10

8. Practical recovery of original solution from SDP solution 11

9. Experimental results on real data 12

A. Vector spaces, canonical vectors and basis 13

B. Vectorization 15

C. Optimal QCQP solutions in the relative pose problem are orthogonal 15

1. Brief summary
This supplementary material contains several proofs related to the claims and content in the main document. We also

included some technical results in Section 4 which are necessary for the actual implementation of the approach. Finally, we
show in Section 9 additional experimental results obtained on real data that were omitted in the main document due to space
limitations.

1

2. Compact formulation of the covariance matrix of normals M (R)

The covariance matrix of all the epipolar normals

M(R) =

N∑
i=1

(f i ×Rf ′i)(f i ×Rf ′i)
>, (1)

where ni = f i ×Rf ′i, is clearly a quadratic expression on the rotation R. Thus, each element mij of this matrix M(R)
can be written as a quadratic function of the elements r in the rotation matrix R:

mij
1
= e>i M(R)ej (2)

2
=

n∑
k=1

e>i (fk ×Rf ′k)(fk ×Rf ′k)
>ej (3)

3
=

n∑
k=1

e>i [fk]×Rf ′k(f
′
k)
>R> [fk]

>
× ej (4)

4
=

n∑
k=1

tr(e>i [fk]×Rf ′k(f
′
k)
>R> [fk]

>
× ej) (5)

5
=

n∑
k=1

tr(f ′k(f
′
k)
>R> [fk]

>
× eje

>
i [fk]×R) (6)

6
=

n∑
k=1

tr(f ′k(f
′
k)
>R>(fk × ej)(fk × ei)

>R) (7)

7
=

n∑
k=1

r>(f ′k(f
′
k)
> ⊗ (fk × ej)(fk × ei)

>)r (8)

8
= r>

(
n∑
k=1

(f ′k ⊗ (fk × ej))(f
′
k ⊗ (fk × ei))

>

)
r. (9)

A brief summary of the steps performed here follows:

1. Write the (i, j)-th element in terms of the complete matrix, multiplied by canonical vectors.

2. Substitute the definition of the covariance matrix (1).

3. Rewrite the cross product as fk ×Rf ′k = [fk]×Rf ′k, in terms of the corresponding skew-matrix.

4. The trace of a scalar quantity is the identity function.

5. Use the cyclic properties of the trace to rotate the terms.

6. Rewrite the cross-products back to its explicit form.

7. Apply vectorization, according to (123), to extract r = vec(R) from the expression.

8. The sum of quadratic functions is a single quadratic function.

Thus, in view of the result above, given a list of feature correspondences {(fk,f
′
k)}Nk=1, each element in the covariance

matrix M(R) can be seen then as a a quadratic function mij(R) = r>Cijr, where

Cij =

n∑
k=1

(f ′k ⊗ (fk × ej))(f
′
k ⊗ (fk × ei))

>. (10)

This expression is beneficial, as it means that all the data in the problem can be condensed into a fixed number of matrices of
small dimension, in linear time w.r.t. the numberN of feature correspondences. The complexity of any subsequent operations
should then be independent of N .

3. Data matrix for the quadratic objective in terms of vec(X)

In the main document we claim that the joint optimization objective

f(R, t) = t>M(R)t =

n∑
i,j=1

ti(r
>Cijr)tj , (11)

may be written as

f(R, t) =

n∑
i,j=1

(tir)
>Cij(tjr) = x>Cx, s.t. x = vec(X), X = rt>, (12)

where all the data in the problem has been collected into a single matrix C. A proof follows:

f(R, t)
1
= t>M(R)t (13)

2
=

n∑
i,j=1

tir
>Cijrtj (14)

3
=

n∑
i,j=1

e>i (tr
>)Cij(rt

>)ej (15)

4
=

n∑
i,j=1

tr(e>ijX
>CijX) (16)

5
= x>

 n∑
i,j=1

eij ⊗Cij

︸ ︷︷ ︸

C

x (17)

The performed steps in the proof are:

1. This is the joint objective, corresponding to the Rayleigh quotient of matrix M(R).

2. Simply write the sum form of the quadratic form, substituting mij(R) = r>Cijr as argued in Section 2.

3. Write elements tk = e>k t and regroup.

4. Identify X = rt>, introduce trace and apply cyclic property. Also we make use of the definition eij = eie
>
j .

5. Vectorize the trace of a product using (123).

The data matrix C in the last expression gathers the 9 × 9 data matrices Cij standing for every component mij into a
single 27× 27 matrix

C =

C11 C12 C13

C21 C22 C23

C31 C32 C33

 ∈ Sym27. (18)

4. Details on the standard QCQP formulation
As stated in the main document, any Quadratically Constrained Quadratic Programming (QCQP) problem instance (with

equality constraints only), and in particular any QCQP characterization of our relative pose problem, may be written in the
following generic form:

min
z̃

= z̃>Q̃0z̃, z̃ =
[
1, z>

]>
, (19)

s.t. z̃>Q̃iz̃ = 0, i = 1, . . . ,m, (20)

where z is a vector stacking all unknowns involved in the problem, Q̃0 is the homogeneized data matrix and Q̃i, i = 1, . . . ,m,
are the homogeneized constraint matrices. Homogeneization here refers to the common trick of putting together all the terms
in a quadratic function by homogeneizing the variable vector z with an additional unit element1, so that at the end we can

1Common conventions are either to append [1] or prepend [3] the unit element. For convenience in the expressions we are prepending here.

regard it as if it was a plain quadratic form qQ̃i
(z̃):

z>Qiz + 2b>i z + ci =
[
1 z>

] [ci b>i
bi Qi

] [
1
z

]
= z̃>Q̃iz̃ ≡ qQ̃i

(z̃). (21)

Since z stacks all the unknowns in the quadratic formulation, R ∈ SO(3), t ∈ S2, and X = rt>, with the chosen
representations this vector will have #(z) = #(R) + #(t) + #(X) = 9 + 3 + 27 = 39 elements, and thus #(z̃) = 40
elements. The corresponding 40 × 40 homogeneized matrices in the QCQP formulation may be regarded as divided into
blocks. We will refer to the (a, b)-block of a matrix Q̃, noted as Q̃ab or Q̃[a, b], as the submatrix formed by the elements
indexed by a and b (not necessarily contiguous):

Q̃ab = Q̃[a, b] =
[
Qij
]
i∈a,j∈b . (22)

If we consider e.g. the variable ordering z =
[
1,x>, t>, r>

]>
(the concrete chosen order is irrelevant, and it just results

in permutations on the Q̃i matrices), a particular matrix Q̃ can be seen then as

1 x t r

1 c b>x b>t b>r
x bx Qxx Qxt Qxr

t bt Qtx Qtt Qtr

r br Qrx Qrt Qrr

 ≡ Q̃. (23)

Next, we will obtain the concrete expression for the matrices Q̃i in the QCQP problem corresponding to the optimization
objective and the specific constraints considered in our problem, which in the most general, redundantly constrained case,
come from the extended sets {ĈR, Ĉt, ĈX} characterized in the main document.

For the subsequent steps, it will be particularly convenient to introduce the homogeneized auxiliary variable

X̃ = r̃t̃
>
=

[
1 t>

r rt>

]
=

[
1 t>

r X

]
, r̃ =

[
1

vec(R)

]
, t̃ =

[
1
t

]
, (24)

and choose the variable ordering z̃ induced by the vectorization of X̃ , so that

z̃ = vec(X̃) = t̃⊗ r̃. (25)

We will also make extensive use of some basic vector algebra, canonical vectors and vectorization that are documented in
Appendices A and B.

4.1. Objective matrix: Q̃0

This is straightforward, as the objective x>Cx = z̃>Q̃0z̃ clearly corresponds to a matrix Q̃0 which is zero everywhere
except for the (x,x)-block, whose value is Q̃0[x,x] = C.

4.2. Constraint matrices for all sphere constraints: Ĉt
Consider to begin with the simple quadratic constraint characterizing the sphere constraint

t>t = 1⇒ qP̃ (t̃) = t̃
>
[
−1 0>

0 I3

]
︸ ︷︷ ︸

P̃

t̃ = 0, (26)

where P̃ is the 4× 4 matrix corresponding to this constraint when seen as a quadratic form of t̃.
The lifting trick proposed in the main document is to multiply the original constraint qP̃ (t̃) = 0 by either linear factors ri

for i = 1, . . . , 9 or quadratic factors rirj for i, j = 1, . . . , 9 to obtain new valid redundant constraints. By using the convenient
homogeneized counterparts r̃, t̃ and X̃ proposed in (24), all of these constraints may be conveniently characterized as the set

r̃i · r̃j · qP̃ (t̃) = 0, ∀i, j = 1, . . . , 10. (27)

Note there are 10 indexes, as the homogeneous component of r̃ is also featured in the products above. Indeed, when i = j = 1
we get the original quadratic constraint qP̃ (t̃) = 0, if i = 1, j 6= 1 we get the cubic lifts r̃j · qP̃ (t̃) = 0, and finally i 6= 1,

j 6= 1 leads to the quartic lifts. Next we characterize the constraint matrices
S2

Q̃ij for all these possible variations of the
sphere constraint (27), under the QCQP formulation (20) and with the natural ordering z̃ = vec(X̃) (25):

r̃i · r̃j · qP̃ (t̃) = (r̃ir̃j)t̃
>
P̃ t̃ (28)

= (r̃it̃
>
)P̃ (t̃r̃j) (29)

= e>i (r̃t̃
>
)P̃ (t̃r̃>)ej (30)

= e>i X̃P̃ X̃
>
ej (31)

= tr(P̃ X̃
>
eje
>
i X̃) (32)

= vec(X̃)>(P̃ ⊗ eji) vec(X̃) (33)

= z̃> (P̃ ⊗ eji)︸ ︷︷ ︸
S2

Q̃ij

z̃ = 0. (34)

Note that since we are dealing with quadratic functions, there are infinitely many representations for the quadratic form.
In particular, we choose the usual symmetric one, and the extended set of all constraint matrices stemming from the sphere
constraint for the QCQP problem is given by the 40× 40 matrices

S2

Q̃ij =

[
−1 0>

0 I3

]
︸ ︷︷ ︸

4×4

⊗
(
eij + eji

2

)
︸ ︷︷ ︸

10×10

, ∀i = 1, . . . , 10, j = i, . . . , 10. (35)

Due to the symmetry above, this results overall in
(
10
2

)
= 55 independent constraints. Otherwise stated, the family of lifted

sphere constraints may be written in terms of the canonical vectors for the space Sym10 (see App. A):

S2

Q̃ij =

[
−1 0>

0 I3

]
⊗ (+

10eij), ∀(+
10eij) ∈ B(Sym10). (36)

4.3. Constraint matrices for all rotation constraints: ĈR
The set of redundant constraints chosen to represent SO(3) in this work is the same as for [1],

CR ≡

R>R = I3, RR> = I3,

(Rei)× (Rej) = (Rek),

∀(i, j, k)={(1, 2, 3), (2, 3, 1), (3, 1, 2)},
(37)

which features only quadratic constraints. Thus, every rotation constraint can be written as

qP̃ k
(r̃) = r̃>P̃ kr̃ = 0, k ∈ CR. (38)

The particular expression for each 10 × 10 constraint matrix P̃ k is featured in the supplementary material for [1], and we
revisit them next for completeness.

Orthonormality of rotation columns The common matrix constraint enforcing orthonormal columns,

R>R = I3 → R>R− I3 = 03,

may be seen as 9 scalar constraints indexed by (i, j) ∈ {1, 2, 3} × {1, 2, 3}:

qP̃ c
ij
(r̃) = e>i (R

>R− I3)ej (39)

= r̃>
[
−δij 0>

0 eij ⊗ I3

]
︸ ︷︷ ︸

P̃
c
ij

r̃ = 0. (40)

Here, δij stands for the Kronecker delta whose value is 1 only if i = j, and 0 otherwise.
Part of these constraints are actually equivalent, and after symmetrization of the corresponding quadratic forms we see the

set of matrix constraints can be characterized as

P̃
c

ij =

[
−δij 0>

0 (+3eij)⊗ I3

]
, ∀(+3eij) ∈ B(Sym3), (41)

which corresponds to
(
3
2

)
= 6 linearly independent matrices.

Orthonormality of rotation rows Akin to the rotation matrix columns, the rotation matrix rows must be orthonormal,

RR> = I3 → RR> − I3 = 03,

which again amounts to 9 scalar constraints

qP̃ r
ij
(r̃) = e>i (RR> − I3)ej (42)

= r̃>
[
−δij 0>

0 I3 ⊗ eij

]
︸ ︷︷ ︸

P̃
r
ij

r̃ = 0, (43)

of which, after symmetrization, only
(
3
2

)
= 6 linearly independent ones remain:

P̃
r

ij =

[
−δij 0>

0 I3 ⊗ (+3eij)

]
, ∀(+3eij) ∈ B(Sym3). (44)

Right-hand rule on rotation columns The well-known right-hand rule, which features the chirality constraint on the
rotation columns2

(Rei)× (Rej) = Rek, (i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}, (45)

provides 3 scalar constraints for each ijk triplet. This amounts to 3 ·3 = 9 scalar scalar constraints, each of which is writable
as an homogeneized quadratic form

q
P̃
d
ijkα

(r̃) = e>α (−(Rei)× (Rej) +Rek) (46)

= r̃>
[
0 (ek ⊗ eα)

>

0 eij ⊗ [eα]×

]
︸ ︷︷ ︸

P̃
d
ijkα

r̃ = 0, (47)

or, after symmetrization, the constraint matrices

P̃
d

ijkα =

[
0 1

2 (ek ⊗ eα)
>

1
2 (ek ⊗ eα) (−3eij)⊗ [eα]×

]
, (48)

∀(i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}, α = 1, 2, 3. (49)

Note that with the defined canonical basis elements for Skew3, −3eij =
1
2 (3eij − 3eji), we have the equivalence

Right-hand rule on rotation rows For rotation matrix rows, the right hand rule states

(R>ei)× (R>ej) = R>ek, (i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}, (50)

2It may be also applied to rotation rows, but the corresponding constraints are linearly related to those provided by column relations only [1].

and similarly we get the quadratic constraints

q
P̃
d
ijkα

(r̃) = e>α

(
−(R>ei)× (R>ej) +R>ek

)
(51)

= r̃>
[
0 (eα ⊗ ek)

>

0 [eα]× ⊗ eij

]
︸ ︷︷ ︸

P̃
d
ijkα

r̃ = 0, (52)

or, after symmetrization, the constraint matrices

P̃
d

ijkα =

[
0 1

2 (eα ⊗ ek)
>

1
2 (eα ⊗ ek) [eα]× ⊗ (−3eij)

]
, (53)

∀(i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}, α = 1, 2, 3. (54)

Comparing this expression to that obtained for cross-product of rotation columns it may be shown both sets of constraints are
exactly the same, so we only keep e.g. those from rotation columns.

Lifted constraints Here, we proceed similarly to the sphere constraint case: For each constraint in (38), we may build
lifted versions by multiplying either by t̃i or t̃it̃j . Again, all the possible cases are characterized by

t̃i · t̃j · qP̃ k
(r̃) = 0, ∀i, j = 1, . . . , 4; k ∈ CR. (55)

The corresponding constraint matrices
SO(3)

Q̃ijk in our standard QCQP framework (20), with the natural ordering z̃ =

vec(X̃) (25), would read

t̃i · t̃j · qP̃ k
(r̃) = (t̃it̃j)r̃

>P̃ kr̃ (56)

= (t̃ir̃
>)P̃ k(r̃t̃j) (57)

= e>i (tr̃
>)P̃ k(r̃t̃

>
)ej (58)

= e>i X̃
>
P̃ kX̃ej (59)

= tr(e>ijX̃
>
P̃ kX̃) (60)

= vec(X̃)>(eij ⊗ P̃ k) vec(X̃) (61)

= z̃> (eij ⊗ P̃ k)︸ ︷︷ ︸
SO(3)

Q̃ijk

z̃ = 0. (62)

Again, after symmetrization, this results in the 40× 40 constraint matrices

SO(3)
Q̃ijk =

(
eij + eji

2

)
︸ ︷︷ ︸

4×4

⊗ P̃ k︸︷︷︸
10×10

, ∀i = 1, . . . , 4, j = i, . . . , 4, k ∈ CR, (63)

resulting in
(
4
2

)
= 10 independent constraints for each k ∈ CR. Otherwise stated, the family of lifted rotation constraints

may be written in terms of the canonical vectors for the space Sym4 (see App. A):

SO(3)
Q̃ijk = (+4eij)⊗ P̃ k, ∀(+4eij) ∈ B(Sym4). (64)

There are 20 independent constraints in the rotation constraint set proposed in [1], so this lifting leads to an overall of
10× 20 = 200 independent constraints.

4.4. Constraint matrices for all constraints on auxiliary variable: ĈX
Finally, in the main document it has been proposed that besides the quadratic definition constraint X = rt>, we also may

feature the constraint rank(X) = 1 through the condition that every 2× 2 minor in X has zero determinant:∣∣∣∣Xij Xij′

Xi′j Xi′j′

∣∣∣∣ = XijXi′j′ −Xij′Xi′j = 0, (65)

s.t. i = 1, . . . , 9; i′ = i, . . . , 9; (66)
j = 1, . . . , 3; j′ = j, . . . , 3. (67)

In fact, we may characterize the definition and rank(X) = 1 constraints jointly through the constraint rank(X̃) = 1. This
way, all the constraints in the set ĈX may be written as∣∣∣∣ X̃ij X̃ij′

X̃i′j X̃i′j′

∣∣∣∣ = X̃ijX̃i′j′ − X̃ij′X̃i′j = 0, (68)

s.t. i = 1, . . . , 10; i′ = i, . . . , 10; (69)
j = 1, . . . , 4; j′ = j, . . . , 4, (70)

and the constraint X = rt> corresponds to the particular 3 · 9 = 27 cases with i = j = 1.
Building upon this convenient general formulation we obtain the corresponding constraint matrices

X
Q̃jj′ii′ for our

general QCQP framework: ∣∣∣∣ X̃ij X̃ij′

X̃i′j X̃i′j′

∣∣∣∣ = X̃ijX̃i′j′ − X̃ij′X̃i′j (71)

= (e>i X̃ej)(e
>
i′ X̃ej′)− (e>i X̃ej′)(e

>
i′ X̃ej) (72)

= (e>j X̃
>
ei)(e

>
i′ X̃ej′)− (e>j′X̃

>
ei)(e

>
i′ X̃ej) (73)

= tr(e>jj′X̃
>
eii′X̃ − ejj′X̃

>
eii′X̃) (74)

= tr((e>jj′ − ejj′)X̃
>
eii′X̃) (75)

= tr((ejj′ − e>jj′)
>X̃

>
eii′X̃) (76)

= z̃>
(
(ejj′ − e>jj′)⊗ eii′

)︸ ︷︷ ︸
X
Q̃jj′ii′

z̃ = 0 (77)

Scaling the constraint matrix above we may write
X
Q̃jj′ii′ ∼ (−4ejj′) ⊗ (10eii′) (see App. A for notation), and this in turn

may be equivalently symmetrized into

X
Q̃jj′ii′ = sym(−4ejj′ ⊗ 10eii′) (78)

=
1

2

(−
4ejj′ ⊗ 10eii′ +

−
4e
>
jj′ ⊗ 10e

>
ii′
)

(79)

=
1

2

(−
4ejj′ ⊗ 10eii′ − −4ejj′ ⊗ 10e

>
ii′
)

(80)

=
1

2

(−
4ejj′ ⊗ (10eii′ − 10e

>
ii′)
)

(81)

= −4ejj′ ⊗
1

2
(10eii′ − 10e

>
ii′) (82)

= (−4ejj′)⊗ (−10eii′). (83)

The matrix above is clearly symmetric:

X
Q̃>jj′ii′ =

−
4e
>
jj′ ⊗ −10e>ii′ = (−−4ejj′)⊗ (− −10eii′) =

X
Q̃jj′ii′ . (84)

Once again, the whole family of lifted constraints may be written in terms of the canonical vectors of a suitable space, in
this case the Cartesian product Skew4 × Skew10 (see App. A for details):

X
Q̃jj′ii′ = (−4ejj′)⊗ (−10eii′), ∀(−4ejj′) ∈ B(Skew4), (

−
10eii′) ∈ B(Skew10). (85)

From this characterization in terms of the canonical vectors for Skew4 and Skew10, it becomes fairly clear that the number
of linearly independent constraints that get generated by these expressions is dim(Skew4) · dim(Skew10) = 6 · 45 = 270.

4.5. Summary

Collecting all results in the sections above, we conclude that the extended set of quadratic constraints corresponding to
{ĈR, Ĉt, ĈX} results in the following specific sets of quadratic matrices for the QCQP problem (20) in its standard form:

Ĉt ⇒
S2

Q̃ij =

[
−1 0>

0 I3

]
⊗ +

10eij , i = 1, . . . , 10; j = i, . . . , 10, (86)

ĈR ⇒
SO(3)

Q̃ijk = +
4eij ⊗ P̃ k, i = 1, . . . , 4; j = i, . . . , 4; P̃ k ∈ CR, (87)

ĈX ⇒
X
Q̃jj′ii′ =

−
4ejj′ ⊗

−
10eii′ , i = 1, . . . , 10; i′ = i, . . . , 10; (88)

j = 1, . . . , 4; j′ = j, . . . , 4.

5. Symmetries in the algebraic error
Consider the squared algebraic error used in our main document. In the objective to optimize (11), each pair (f i,f

′
i)

produces a squared algebraic error term given by

e2i = t>(nin
>
i)t = (t>ni)

2 = (t · (f i × (Rf ′i)))
2. (89)

This, in turn, is just the triple product of three vectors

e2i = det(
[
t | f i | Rf ′i

]
)2. (90)

The error term e2i = e2i (R, t) presents two symmetries w.r.t. the parameters t and R:

e2i (R,−t) = e2i (R, t), (91)

e2i (P tR, t) = e2i (R, t). (92)

The first symmetry (91) is straightforward as

e2i (R,−t) = det(
[
−t | f i | Rf ′i

]
)2 (93)

= (−1)2e2i (R, t) = e2i (R, t). (94)

For the second symmetry (92), substituting the reflection matrix P t = 2tt> − I3 we get

e2i (P tR, t) =det(
[
t | f i | P tRf ′i

]
)2 (95)

=det(
[
t | f i | (2tt> − I3)f

′
i

]
)2 (96)

=
(
det(

[
t | f i | (2(t · f

′
i)t
]
) + det(

[
t | f i | −Rf ′i

]
)
)2

(97)

=
(
0− det(

[
t | f i | Rf ′i

]
)
)2

= e2i (R, t), (98)

where the left determinant in (97) cancels because it has parallel columns.
These symmetries are illustrated in Fig. 1. In conclusion, the algebraic error is invariant to swaps of the translation

direction, as well as reflections of the vector Rf ′i w.r.t. the axis of direction t.

Figure 1. The unsquared algebraic error is the absolute value of the triple product of t, f i and Rf ′i, or equivalently, the unsigned volume
of a parallelepiped formed with the three vectors. The vectors t and Rf ′ in this figure lie in the paper plane. The symmetries are: (1)
In the horizontal axis, swapping the translation sign. (2) In the vertical axis, reflecting Rf ′i w.r.t. t. Both of these modifications keep the
parallelepiped’s volume the same.

6. Equivalence to algebraic objective of 8-point algorithm
The classical 8-point algorithm [2] models the epipolar constraint f>i Ef ′i = 0, where E = [t]×R is the essential matrix,

and proposes to minimize the sum of squared algebraic residues

f(E) =

N∑
i=1

(f>i Ef ′i)
2 =

N∑
i=1

e2i . (99)

We may well rewrite each squared algebraic error above as

e2i =
(
f>i Ef ′i

)2
(100)

=
(
f>i ([t]×R)f ′i)

)2
(101)

=
(
f>i [t]× (Rf ′i)

)2
(102)

=
(
f>i (t× (Rf ′i))

)2
(103)

=
(
det(

[
f i | t | Rf ′i

]
)
)2
. (104)

Using the properties of the determinant, we may simply swap the columns to certify this expression is exactly the same
squared algebraic error we optimize in the formulation presented in our main document.

7. Convex set of optimal SDP solutions
It is argued in the main document that in a well-defined instance of the relative pose problem there exist 4 possible solutions

{z̃k}4k=1, which in the tight case drive to 4 independent rank-1 solutions {Z̃k = z̃?k(z̃
?
k)
>}4k=1 in the SDP relaxed problem.

Let us consider the convex hull of these rank-1 solutions:

Z̃
?
=

4∑
k=1

akZ̃
?

k, s.t. ak ≥ 0,

4∑
k=1

ak = 1. (105)

The following theorem will be necessary for the subsequent results.

Theorem 1. The convex combination (105) is equivalent to an orthogonal eigenvalue decomposition

Z̃
?
=

4∑
k=1

akz̃
?
k(z̃

?
k)
> =

4∑
k=1

λkuku
>
k , (106)

where λk = 8ak and uk = z̃?k/
√
8 stand for the eigenvalues and (orthogonal) eigenvectors of Z̃

?
, respectively. Since Z̃

?
is

at most rank-4, we consider only the 4 leading eigenvalues, as the rest will be zero by definition.

Proof. The convex combination already has the same structure as the eigendecomposition. Besides, the different solutions z̃?k
to from the relative pose problem turn out to be orthogonal, so that z̃?i · z̃?j = 0 if i 6= j (the proof can be found in Appendix
C). So we identify each solution z̃?k with an eigenvector uk, and it only remains to rescale the solutions and barycentric
coefficients to fulfill the unitary constraint ‖uk‖2 = 1:

4∑
k=1

akz̃
?
k(z̃

?
k)
> =

4∑
k=1

(ak‖z̃?k‖22)(
z̃?k
‖z̃?k‖2

)(
z̃?k
‖z̃?k‖2

)>. (107)

From here, identifying terms and using that ‖z̃?k‖22 = 8 holds as shown in (130) the results of the theorem follow.

Now we are in a position to prove the core claim of this section.

Theorem 2 (Convex set of optimal SDP solutions). Given the finite set of SDP solutions {Z̃?

k}rk=1 with rank(Z̃
?

k) = 1, all
points contained in the convex hull of this set, defined by

Z̃
?
=

r∑
k=1

akZ̃
?

k, s.t. ak ≥ 0,

4∑
k=1

ak = 1, (108)

are also optimal SDP solutions.

Proof. By linearity of the SDP objective we have

tr(Q̃0Z̃
?
) = tr(Q̃0

r∑
k=1

akZ̃
?

k) =

r∑
k=1

ak tr(Q̃0Z̃
?

k)︸ ︷︷ ︸
f?

= f?(

r∑
k=1

ak) = f?, (109)

so the points in the convex set reach the same optimal objective. Given the close relationship between the barycentric
coordinates ak and the eigenvalues λk of a solution Z̃

?
, shown in Theorem 1, it is straightforward that the non-negativity of

ak is required to fulfill the Positive Semidefinite (PSD) constraint on Z̃
?
.

8. Practical recovery of original solution from SDP solution
This section provides further insight onto the practical recovery procedure referred in the main document. The question

that arises in practice is, given a particular optimal solution Z̃
?

0 to the SDP problem returned by a particular SDP solver, how
do we recover the optimal solutions (R?

k, t
?
k) to the original problem?

An appealing approach, considering the result presented in Theorem 1, is to perform an eigenvalue decomposition of the
IPM solution Z̃

?

0 =
∑4
k=1 λkuku

>
k , and identify the sought solutions z̃?k through proper scaling of the eigenvectors uk:

z̃?k ← 2
√
2uk. As appealing as this might appear, we will see next this approach breaks when we encounter eigenvalue

multiplicity though.
First, let us provide some insight on the behavior of the solution provided by off-the-shelf Primal-Dual Interior Point

Method (IPM) solvers, such as SeDuMi [6] or SDPT3 [7]. By the inherent way IPM solvers work, leveraging log-barrier
terms associated with the constraint cone, they return a solution which lies strictly inside the convex set of solutions Z?. So,
assuming the relaxation is tight and the problem is well-defined (no degeneracies or multiple physically feasible solutions),
a chosen IPM is expected to return a rank-4 solution Z̃

?

0, never one of the rank-1 solutions Z̃
?

k (vertices of the convex set)
we are actually interested in. In fact, the iterative solution of the IPM tends to the barycenter of the convex set of solutions,
leading to the solution Z̃

?

0 =
∑4
k=1

1
4 Z̃

?

k with ak = 1
4 , which has the single eigenvalue λ1 = 2 with multiplicity 4.

In the extreme case of eigenvalue multiplicity 4, we know the solutions {z̃?k}4k=1 form a basis
[
z̃?k
]

for the non-null
eigenspace of Z̃

?

0, but there are infinitely many possible bases U for this eigenspace that the eigenvalue decomposition might
return, related to our basis of interest by an unknown orthogonal transformation O ∈ O(4):

Z̃
?

0 =
1

4

[
z̃?
] [
z̃?
]>

= 2UU> = 2(UO)(UO)> (110)

Thus, finding the desired solutions
[
z̃?
]

given any eigenspace basis U may not be straightforward.
In practice, though, the limit situation with multiplicity 4 would happen only after infinite iterations. Instead, we observed

that the solution Z̃
?

0 returned by the IPM features two eigenvalues λ1, λ2 with multiplicity 2, which approach each other as
further iterations proceed, but numerically their associated eigenvectors remain well-differentiated. Despite this observation
being fully empirical so far, this property held for every evaluated case and we are confident this may be a consequence of
the underlying problem structure and the inner workings of the IPM solver.

This means that the convex (or eigenvalue) decomposition of the returned solution Z̃
?

0 may be regarded as

Z̃
?

0 = a1
[
z̃?
]
1

[
z̃?
]>
1
+ a2

[
z̃?
]
2

[
z̃?
]>
2

(111)

= λ1U1U
>
1 + λ2U2U

>
2 (112)

= λ1(U1O1)(U1O1)
> + λ2(U2O2)(U2O2)

>, (113)

where all matrices have width 2, in particular, O1,O2 ∈ O(2). Even more relevant to us, from empirical observation, the
pairs of solutions grouped under a common eigenvalue λk correspond to those with a common rotation value and swapped
translation signs.

Let us consider then, without loss of generality, that the pair of eigenvectors in U1 correspond to the pair of solutions
(R?,+t?)→ z̃?1 and (R?,−t?)→ z̃?2. We know by the arguments above that there exists an orthogonal transformation O1

so that

U1 ∝
[
z̃?
]
1
O1. (114)

Now let us consider a column u in U1 (an eigenvector) and the corresponding column o =
[
o1, o2

]>
in the orthogonal

transformation O1. In view of the expression (114), the blocks r and t in the eigenvector u fulfill the condition

ur = o1r
? + o2r

? = (o1 + o2)r
?, (115)

ut = o1(+t?) + o2(−t?) = (o1 − o2)t?. (116)

Since ‖o‖2 = 1, it is clear that the two blocks can never be simultaneously zero, that is, it cannot happen that (o1 + o2) = 0
and (o1 − o2) = 0 at the same time. As a result, we are always able to recover the optimal values r? and t? from one
eigenvector (or both eigenvectors) in U1, by simply scaling properly the corresponding r- or t-block in any eigenvector, as
long as this block is not zero.

The exact same procedure may be applied on the other pair of eigenvectors contained in U2 to obtain the remaining
two solutions (P t?R

?,+t?) → z̃?3 and (P t?R
?,−t?) → z̃?4, or we might simply build these solutions from the already

recovered solution by reflecting the rotation solution with P t? .

9. Experimental results on real data
In this section we provide some additional results obtained from the evaluation of the proposed method (and reference

ones) on relative pose problem instances that originate from real images in the TUM benchmark datasets [5]. Details on how
we generated the instances are provided in the main document.

Note the datasets in [5] feature a varied set of camera pair configurations, varying between o(100) and o(2000) pairs
depending on the dataset, and spanning from generic 3D hand-held trajectories (such as the desk and room sequences) to
specific near-degenerate configurations with almost-zero translation or almost-zero rotation, recorded with the main purpose
of debugging algorithms (that is the case of the xyz or rpy sequences). Despite this wide generality in the geometric
configurations of the problem, as well as some challenging factors such as the presence of real noise stemming from the
actual feature detection step, small FOV, or non-perfect calibration, the resulting optimality gaps depicted in Fig. 2 certify
that the proposed approach through the SDP relaxation is able to retrieve (and certify) the optimal solution to the formulated

problem in all cases. This is a remarkable result, that supports the promising claim that the proposed SDP relaxation remains
tight in relative pose problems encountered in practice.

The results observed on the real data reinforces the already mentioned aspect that even though the optimality gap corre-
sponding to other suboptimal methods, such as 8pt or 8pt+eig, may be deceptively small in many occasions (see Fig.
2), the corresponding error committed in the estimated orientation is much higher, as observed in Fig. 3. As we argued in
the main document, this fact may be justified both by the nature of the optimization objective, since even erroneous residues
tend not to have a very high value, and also by the existence of numerous suboptimal local minima whose objective value is
deceptively close to the optimal one, yet the local solution may be far from the optimum.

freiburg1_desk

freiburg1_desk2

freiburg1_floor

freiburg1_room

freiburg1_rpy

freiburg1_xyz

freiburg2_360_hem
isphere

freiburg2_desk

freiburg2_rpy

freiburg2_xyz

0

0.05

0.1

0.15

0.2

0.25

0.3

o
p
ti
m

a
lit

y
 g

a
p
 (

f-
d
)

SDP

8pt

8pt+eig

Figure 2. Optimality gap w.r.t. certified optimal objective f? for all tested relative pose instances. The instances consist of overlapping
image pairs extracted from each considered TUM dataset [5]. Our method recovered and certified the optimal solution in all cases featuring
an optimality gap that is numerically zero (o(10−10).

A. Vector spaces, canonical vectors and basis
Consider a usual vector space Rn. The canonical vector nei for this space is the n × 1 vector that has a 1-element at

position i and is zero everywhere else. The set of all canonical vectors {nei}ni=1 forms the canonical basis B(Rn) of Rn. We
will often drop the dimension value if this can be inferred from the context, writing only ei.

Similarly, for the space Rm×n of m × n matrices, the canonical matrix mneij = mei ne
>
j stands for a matrix that has

a 1-element at position (i, j) and is zero everywhere else. Once again, the set of all canonical matrices {mnei}i=1,...,m
j=1,...,n

freiburg1_desk

freiburg1_desk2

freiburg1_floor

freiburg1_room

freiburg1_rpy

freiburg1_xyz

freiburg2_360_hem
isphere

freiburg2_desk

freiburg2_rpy

freiburg2_xyz

0

20

40

60

80

100

120

140

160

180

ro
ta

ti
o

n
 e

rr
o

r
[d

e
g

]

SDP

8pt

8pt+eig

Figure 3. Rotation error w.r.t. the certified optimal rotation R? for all tested relative pose instances. The instances consist of overlapping
image pairs extracted from each considered TUM dataset [5]. Whereas the alternative (non-optimal) methods 8pt and 8pt+eig may
quite often return a good solution, it is also true that under the challenging conditions (noisy, small FOV, non-perfect calibration) of the
image pairs considered in these datasets these methods may also often fail to return the optimal solution, or even return a completely wrong
solution.

constitutes the canonical basis B(Rm×n) for the whole matrix space Rm×n. We will often write just neij if the matrix is
square (m = n), or again simply drop the dimension index, eij .

Other convenient spaces that will appear in the course of this supplementary material are the sets of n× n symmetric and
skew-symmetric matrices, denoted Symn and Skewn, respectively. Akin to the previous cases, we may define the canonical
elements of each space as

+
neij =

1

2
(eij + eji), (117)

−
neij =

1

2
(eij − eji). (118)

It is straightforward to observe that +
neij =

+
neji and −neij = −−neji. Thus, a canonical basis B(Symn) for Symn is given

by the
(
n
2

)
indexes 1 ≤ i ≤ n, i ≤ j ≤ n, whereas the canonical basis B(Skewn) for Skewn conforms the

(
n−1
2

)
indexes

1 ≤ i ≤ n, i < j ≤ n. It is a well-known result that the vector space of square matrices is the direct sum of the corresponding
symmetric and skew-symmetric matrices: Rn×n = Symn ⊕ Skewn. In particular, given any square matrix A ∈ Rn×n we

may decompose it as

A =
1

2
(A+A>)︸ ︷︷ ︸
sym(A)

+
1

2
(A−A>)︸ ︷︷ ︸
skew(A)

(119)

where sym(·) and skew(·) return the symmetric and skew-symmetric component of a matrix, respectively.

B. Vectorization
Along this work, we make heavy use of vectorization tricks that allows us to write the problem of interest in a more

convenient form. Some important relations follow [4]:

tr(A>B) = vec(A)> vec(B) (120)

vec(AXB) = (B> ⊗A) vec(X) (121)

vec(ab>) = b⊗ a (122)

tr(A>X>BY) = vec(X)>(A⊗B) vec(Y) (123)

C. Optimal QCQP solutions in the relative pose problem are orthogonal
In order to prove this claim, we are going to choose the following ordering of the QCQP variables:

z̃ = vec(r̃t̃
>
) = t̃⊗ r̃, (124)

where homogeneized variables are appended the unit element as usual:

t̃ =

[
t
1

]
, r̃ =

[
vec(R)

1

]
. (125)

With this ordering, it is almost straightforward to show that orthogonality holds between the 4 symmetric solutions of the
problem:

z̃?i · z̃?j = (t̃
?
i ⊗ r̃?i) · (t̃

?
j ⊗ r̃?j) (126)

= (t̃
?
i · t̃

?
j)(r̃

?
i · r̃?j) (127)

= (1 + t?i · t?j)(1 + r?i · r?j) (128)

= (1 + t?i · t?j)(1 + tr((R?
i)
>R?

j) (129)

In view of the result above, let us consider the potential scenarios:

• The solutions i and j are symmetric w.r.t. translation. In this case t?i · t?j = −1, so the first factor cancels.

• The solutions i and j are symmetric w.r.t. rotation. In this case (R?
i)
>R?

j = P t, and tr(P t) =
∑
λ(P t) = −1, so

the second factor cancels.

So, in conclusion, as long as i 6= j there exists at least one of these two symmetries and the corresponding dot product
between z̃?i and z̃?j cancels.

As a corollary of the relation above, each solution has a fixed squared norm

‖z̃?k‖22 = z̃?k · z̃?k = (1 + t?k · t?k)(1 + tr((R?
k)
>R?

k) = 2 · 4 = 8. (130)

References
[1] J. Briales and J. González-Jiménez. Convex Global 3D Registration with Lagrangian Duality. In International Conference on Computer

Vision and Pattern Recognition, jul 2017. 3, 5, 6, 7
[2] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge University Press, New York, NY, USA, 2

edition, 2003. 10

[3] D. Henrion, J.-B. Lasserre, and J. Löfberg. GloptiPoly 3: moments, optimization and semidefinite programming. Optimization
Methods & Software, 24(4-5):761–779, 2009. 3

[4] K. Schäcke. On the kronecker product, 2013. 15
[5] J. Sturm and N. Engelhard. A benchmark for the evaluation of RGB-D SLAM systems. Intelligent Robots and Systems (IROS), 2012

IEEE/RSJ International Conference on, 2012. 12, 13, 14
[6] J. F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization methods and software,

11(1-4):625–653, 1999. 11
[7] K.-C. Toh, M. J. Todd, and R. H. Tütüncü. SDPT3a MATLAB software package for semidefinite programming, version 1.3. Optim.

methods Softw., 11(1-4):545–581, 1999. 11

