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In	this	document,	we	provide	additional	introduction	and	results	in	support	of	the	primary	manuscript.	
Part	A	presents	an	extended	introduction	of	the	duality	properties	of	light	field	capture	and	display	on	
the	 Lytro	 camera	 and	 multi-layer	 display	 for	 highlighting	 the	 proposed	 motivation.	 Part	 B	 includes	
additional	descriptions	and	results	on	the	proposed	contrast-enhanced	light	field	salience	detection	and	
on	the	salience-guided	light	field	display	in	order	to	assess	the	advances.	The	results	and	demo	EXE	of	
the	proposed	light	field	salience	detection	and	display	are	introduced	in	Part	C.	

A. Duality of Light Field Capture and Display 

This	section	provides	a	brief	 introduction	to	 light	field	capture	and	display	using	the	Lytro	camera	and	
multi-layer	LCDs	for	further	clarifying	the	special	properties	of	 light	field	 images	and	the	motivation	of	
the	proposed	display.			

A.1.	Introduction	of	Lytro	Camera	and	Salience	Detection	Dataset	

Here,	 Figure	 S.1	 illustrates	 the	 light	 field	 imaging	 structure	 of	 a	 light	 field	 camera	 [1-2].	 This	 type	 of	
camera	has	two	sets	of	lenses;	the	main	lens	and	the	microlens	array.	Rays	can	be	seen	as	intersecting	
behind	and	in	front	of	the	microlens	array	as	a’	and	b’.	The	range	a	to	b	over	which	rays	can	intersect	is	
regarded	 as	 the	 re-focusable	 range.	 This	 re-focusable	 depth	 information	 can	 be	 outputted	 from	 the	
Lytro	software	which	has	 two	components;	 the	 front	re-focusable	position	a	and	the	rear	re-focusable	
position	b.	
	
Based	 on	 this	 type	 of	 Lytro	 camera,	 the	 public	 dataset	 [3]	 used	 in	 this	 paper	 provides	 the	 following	
materials:	 (1)	 a	 set	 of	 re-focus	 images,	 named	 ‘focus	 stack’,	 (2)	 the	 all-focus	 image	 which	 can	 be	
generated	based	on	the	focus	stack	with	official	Lytro	software	[4],	(3)	the	depth	map	related	to	the	all-
focus	image,	(4)	the	raw	light	field	data	which	can	be	mapped	to	the	original	lenslet	image	and	related	
multi-view	 images	 based	 on	 the	 public	MATLAB	 toolbox	 [5]	 and	 (5)	 the	manual	 ground	 truth	 of	 the	
salience	detection	result.	
	



	
Figure	S.1.	The	structure	of	Lytro	light	field	camera.	The	black	rays	denote	the	trajectory	of	original	light	rays.	In	the	image	
domain,	virtual	planes		a’	and	b’	correspond		to	object	plane	a	and	b,	respectively.	

A.2.	Properties	Demonstration	of	Light	Field	Images	

Figure	S.2	illustrates	the	all-focus	image,	depth	image	and	lenslet	image	based	on	the	Lytro	camera.	The	
yellow	and	blue	lenslet	images	are	related	to	the	yellow	and	blue	disks	on	the	all-focus	image.	Figure	S.3	
demonstrates	 the	 multi-view	 performance	 and	 refocus	 ability	 of	 the	 light	 field	 based	 on	 the	 Lytro	
camera	[6].	
	

	
Figure	S.2.	The	illustrations	of	all-focus	image,	depth	image	and	lenslet	image	based	on	Lytro	camera.	



	

	
Figure	S.3.	The	illustrations	of	light	field	properties	of	multi-view	display	and	refocus	display	with	the	same	raw	data.	

	

A.3.	Multi-layer	Light	Field	Display		

In	 this	 section,	 the	multi-layer	 light	 field	 display	 is	 explained	 from	 the	 viewpoint	 of	 image	 coding	 [7].	
Here	 we	 take	 two-layer	 optimization	 for	 example.	L	is	 the	 original	 light	 field	 matrix.	A	and	B	are	 the	
vectors	 represented	 the	 transmittance	of	 the	 front	 layer	and	 rear	 layer,	 respectively.	W	is	a	0/1	value	
matrix	which	 controls	 the	 optimized	 region	 for	 target	 light	 filed.	 The	 reconstructed	 light	 field	 can	 be	
generated	by	the	Hadamard	product	of	W	and	AB(,	as	shown	in	Equation	(1):		
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As	illustrated	in	Figure	S.4,	inspired	by	the	idea	of	3D	image	coding,	taking	the	light	field	image	“dice”	[8]	
for	 instance,	 the	 layered	optimization	 for	 light	 field	display	 could	be	 regarded	as	 encoding	7x7	multi-
view	 images	 into	 two-layer	multi-layer	 images.	 The	whole	 optimization	 of	 Equation	 (1)	 could	 also	 be	
seen	as	the	minimization	of	residual	between	original	light	field	and	reconstructed	light	field.	

 

	



	

	
Figure	S.4.	An	example	of	layered	optimization	in	a	view	of	light	field	3D	image	coding.	

	

	

A.4.	Proposed	Motivation	

Figure	 S.5	 further	 demonstrates	 the	 proposed	 motivation	 using	 an	 example	 from	 the	 public	 Lytro	
dataset	[3].	Based	on	the	salience	detection	result	the	initialization	method	for	light	field	reconstruction	
with	 multi-layer	 LCDs	 could	 be	 different.	 Since	 the	 depth	 range	 for	 this	 type	 of	 display	 is	 only	
comparable	 with	 2D	 spatial	 resolution	 in	 a	 small	 range	 from	 the	 middle	 of	 LCDs,	 the	 proposed	
optimization	 could	 cover	 more	 salience	 objects	 in	 the	 displayed	 depth	 range	 compared	 to	 the	
conventional	initialization	way	which	displays	light	field	just	from	the	center	of	depth	range.		
	
	

								
Figure	S.5.	An	example	of	salience	guided	depth	calibration	for	perceptually	optimized	compressive	light	field	3D	display.	

	



B. Additional Experimental Results of Light Field Salience Detection and 

Layered Display 

In	 the	 primary	 manuscript,	 we	 mainly	 compare	 the	 proposed	 salience	 detection	 approach	 with	 the	
state-of-the-art	 light	 field	 salience	 detection	 algorithms	 which	 also	 have	 publications	 based	 on	 the	
public	light	field	salience	dataset.	Here,	following	the	survey	of	2D	salience	detection	models	in	[9],	we	
will	discuss	more	comparative	tests	with	more	state-of-the-art	salience	detection	methods	on	2D	inputs.	
The	subjective	performance	test	and	related	supporting	materials	are	also	discussed	and	released	in	this	
section.			

B.1.	Light	Field	Salience	Detection		

We	use	standard	precision	recall	(PR)	and	receiver	operating	characteristic	(ROC)	curves	for	evaluations.	
When	computing	 the	overall	quality	on	 the	whole	dataset,	we	consider	 three	metrics	 for	determining	
the	accuracy	of	saliency	detection:	F-measure,	area	under	curve	(AUC)	and	mean	absolute	error	(MAE),	
whose	accurate	definition	and	computation	equations	can	be	found	in	references	[9,	10].	
	

	
Figure	S.6.	Quantitative	results	of	our	method,	state-of-the-art	2D	methods	and	depth-extended	versions.	(a)	PR	curves;	(b)	
ROC	curves.	

	
State-of-the-art	2D	salience	approaches	have	previously	not	been	tailored	for	 light	 field	data,	but	only	
for	2D	image	inputs.	To	validate	the	benefit	of	light	field	depth,	we	extend	the	experiments	with	8	state-
of-the-art	2D	saliency	approaches.	These	methods	include	Tavakoli	[11],	CNTX	[12],	GS	[13],	SF	[14],	TD	
[15],	 CovSal	 [16],	 GBMR	 [17]	 and	 wCtr	 [18].	We	 set	 the	models	 all	 with	 default	 parameters	 in	 their	
original	implementations.	
	



Figure	S.6	presents	the	PR	and	ROC	curves	of	our	results.	The	comparisons	of	F-measure,	ROC	and	MAE	
are	given	in	Table	S.1.	Here	the	suffix	‘_D’	denotes	further	fusing	2D	saliency	maps	with	light	field	depth	
contrast	 saliency	 maps	 into	 final	 ones	 through	 the	 standard	 pixel-wise	 summation.	 Note	 that	 our	
approach	 is	 superior	 to	 all	 the	 state-of-the-art	 2D	models,	 even	 combined	with	 the	 light	 field	 depth-
induced	 saliency	 and	 the	 latest	 tailored	 light	 field	model	 [9].	 Although	 the	 accuracy	 from	 all	 the	 2D	
saliency	methods	improve	about	1~5%	and	3~6%	on	F-measure	and	MAE,	respectively,	by	incorporating	
the	light	field	depth	saliency,	they	still	cannot	exceed	the	light	field	models.	This	is	because	this	type	of	
comparison	is	unfair	from	the	input	of	raw	data,	light	field	salience	models	can	make	use	of	more	cues	
like	focus	cue	for	salience	detection.		
	
The	experimental	results	of	the	post-optimization	are	also	highlighted	in	Table	S.2,	which	shows	that	the	
proposed	algorithm	is	better	than	the	state-of-the-art	[9]	by	either	using	or	not	using	post-processing.	
Here	the	suffix	‘_w/oP’	denotes	the	results	without	post-optimization.	
	
	

MODEL	 F-MEASURE	 AUC	 MAE	
CNTX	 0.3643	 0.6700	 0.3574	

CNTX_D	 0.4123	 0.7718	 0.3514	
COVSAL	 0.6335	 0.8599	 0.2417	

COVSAL_D	 0.6373	 0.8466	 0.2850	
TAVAKOLI	 0.5498	 0.8078	 0.2551	

TAVAKOLI_D	 0.5711	 0.8276	 0.2903	
GS	 0.5944	 0.8443	 0.2395	

GS_D	 0.6217	 0.8792	 0.2843	
GBMR	 0.7461	 0.8965	 0.1822	

GMRR_D	 0.7536	 0.9072	 0.2415	
SF	 0.4678	 0.8301	 0.2468	

SF_D	 0.4704	 0.8552	 0.2903	
TD	 0.5766	 0.7775	 0.2623	

TD_D	 0.5999	 0.849	 0.2951	
WCTR	 0.6996	 0.8991	 0.1878	

WCTR_D	 0.7382	 0.9156	 0.2475	
DLFS	 0.8186	 0.9641	 0.1363	
OURS	 0.8424	 0.9640	 0.1040	

	
Table	S.1.	Comparision	of	F-measure,	AUC	and	MAE	from	our	method,	state-of-the-art	2D	methods	and	their	light	field	
extended	method	(red:	the	best;	blue:	the	second	best).	
	
	
	

	
MODEL	 F-MEASURE	 AUC	 MAE	
DLFS	 0.8186	 0.9641	 0.1363	

DLFS_w/oP	 0.7749	 0.8982	 0.1605	
OURS	 0.8424	 0.9640	 0.1040	

OURS_w/oP	 0.8276	 0.9716	 0.1573	
	

Table	S.2.	Comparision	of	F-measure,	AUC	and	MAE	from	our	method,	state-of-the-art	3D	methods	and	their	light	field	
extended	method	(red:	the	best;	blue:	the	second	best).	

	



B.2.	Light	Field	Layered	Display	 	

SCORE	 EVALUATION	
0	 Bad	(salient	objects	too	blurred	to	see)	
1	 Middle(salient	objects	are	blurred	but	can	see)	
2	 Good(salient	objects	are	not	blur)	
3	 Best(salient	objects	are	clear	in	3D)	

	
Table	S.3.	Evaluation	scores.	

	
In	 this	 paper,	 12	 individuals	whose	 ages	 from	 24	 to	 70	 also	 evaluate	 the	 subjective	 performances	 of	
variable	prototype	 configurations	on	 the	prototype	 shown	 in	Figure	7	of	 the	primary	manuscript.	 The	
ranks	 of	 the	 display	 performance	 are	 recorded	 to	 determine	 the	 subjective	 score	 that	 subjects	 could	
assess	according	to	the	related	weightings	shown	in	TABLE	3.	The	configuration	which	display	light	field	
test	 images	with	clear	salient	object	as	well	as	 real	3D	performance	will	be	recoded	as	best.	Different	
configurations	 could	 have	 the	 same	 score,	 even	 two	 coordinate	 best	 for	 one	 test	 image	 if	 their	
subjective	performances	seem	the	same.	
	
This	evaluation	is	implemented	on	images	one	by	one.	The	performance	of	optimized	depth	initialization	
was	 viewed	 as	 the	 best	 with	 75	 cases	 in	 the	 100	 test	 images,	 and	 its	 average	 score	 is	 264.	 The	
configuration	A	has	53	best	with	238	score,	while	configuration	B	and	configuration	C	only	have	5	best	
and	3	best	in	the	subjective	experiment.	

C. Experimental Results and Demo EXEs 

More	 results	 and	 demo	 EXEs	 of	 proposed	 light	 field	 salience	 detection	 and	 display	 are	 released	 and	
introduced	in	this	section,	including:	
	
Material	1:	Demo	for	a	simulated	three-layer	light	field	display	based	on	the	test	image	“Messerschmitt”	
from	[8].	
	
Material	2:	A	light	field	media	player	for	multi-layer	LCDs.	It	is	based	on	the	public	media	player	[19]	and	
public	light	field	dataset	[8].	
	
Material	3:	The	GPU	speed-up	layered	decomposition	software	tailored	from	the	simultaneous	algebraic	
reconstruction	 technique	 (SART)	 algorithm	 and	 its	 cg	 open	 source	 code	 [20]	 is	 also	 released	 and	
demonstrated	on	the	public	Lytro	camera	dataset	[3].	
	
Material	4:	The	original	salience	detection	results	of	the	proposed	method	both	with	and	without	post-
optimization	are	released.	The	reported	numbers	are	generated	on	the	platform	of	public	salience	test	
[10].		
	
All	these	Materials	can	be	downloaded	from	http://shizhengwang.info/projects/LFSDisplay.html.	
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